Einstein, A. & de Haas, W. J. Experimental proof of the existence of Ampère’s molecular currents. KNAW Proc. 18, 696–711 (1915).
Scott, G. G. Review of gyromagnetic ratio experiments. Rev. Mod. Phys. 34, 102–109 (1962).
Zhang, L. F. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).
Hamada, M., Minamitani, E., Hirayama, M. & Murakami, S. Phonon angular momentum induced by the temperature gradient. Phys. Rev. Lett. 121, 175301 (2018).
Romao, C. P., Catena, R., Spaldin, N. A. & Matas, M. Chiral phonons as dark matter detectors. Phys. Rev. Res. 5, 043262 (2023).
Ren, Y. F., Xiang, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).
Kim, K. et al. Chiral phonon activated spin Seeback effect. Nat. Mater. 22, 322–328 (2023).
Basini, M. et al. Terahertz electric-field-driven dynamical multiferroicity in SrTiO3. Nature 628, 534–539 (2024).
Ohe, K. et al. Chirality-induced selectivity of phonon angular momentum in chiral quartz crystals. Phys. Rev. Lett. 132, 056302 (2024).
Chen et al. Chiral phonon diode effect in chiral cystals. Nano Lett. 4, 1688–1693 (2022).
Liu, M. et al. Light-driven nanoscale plasmonic motors. Nat. Nanotech. 5, 570–573 (2010).
Zhang, T. T., Murakami, S. & Miao, H. Topological and chiral phonons. Nat. Commun. 16, 3560 (2025).
Zhang, T. T., Liu, Y., Miao, H. & Murakami, S. New advances in phonons: from band topology to quasiparticle chirality. Preprint at https://arxiv.org/abs/2505.06179 (2025).
Alfonsov, A., Büchner, B. & Kataev, V. All-on-chip concurrent measurements of the static magnetization and of the electron spin resonance with microcantilevers. Appl. Magn. Reson. 53, 555–563 (2022).
Fukuroi, T. & Muto, Y. Specific heat of tellurium and selenium at very low temperatures. Chem. Metall. 8, 213–222 (1956).
Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).
Tang, F. et al. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature 569, 537–541 (2019).
Gooth, J. et al. Axionic charge density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019).
Miao, H. et al. Spontaneous chirality flipping in an orthogonal spin-charged ordered topological magnet. Phys. Rev. X 14, 011053 (2024).
Yang, F., et al. Incommensurate transverse Peierls transition. Preprint at https://arxiv.org/abs/2410.10539 (2024).
Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022).
Choi, I. H. et al. Real-time dynamics of angular momentum transfer from spin to acoustic chiral phonon in oxide heterostructures. Nat. Nanotech. 19, 1277–1282 (2024).
Grissonnanche, G. et al. Chiral phonons in the pseudogap phase of cuprates. Nat. Phys. 16, 1108–1111 (2020).
Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).
Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).
Šmejkal, L. et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 131, 256703 (2023).
Park, S. & Yang, B.-J. Phonon angular momentum Hall effect. Nano Lett. 20, 7694–7699 (2020).
Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413 (1989).
Kitaev, A. Y. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
Ideue, T. et al. Pressure-induced topological phase transition in noncentrosymmetric element tellurium. Proc. Natl Acad. Sci. USA 116, 25530 (2019).
Koma, A. & Tanaka, S. Etch pits and crystal structure of tellurium. Phys. Stat. Sol. 40, 239–248 (1970).
Ades, S. & Champnes, C. H. Optical activity of tellurium to 20 μm. J. Opt. Soc. Am. 65, 217–218 (1975).
Furukawa, T. et al. Current induced magnetization caused by crystal chirality in nonmagnetic elemental tellurium. Phys. Rev. Res. 3, 023111 (2021).
Spirito, D., Marras, S. & Martin-Garcia, B. Lattice dynamics in chiral tellurium by linear and circularly polarized Raman spectroscopy: crystal orientation and handedness. J. Mater. Chem. C 12, 2544 (2024).
Streib, S. Difference between angular momentum and pseudoangular momentum. Phys. Rev. B 103, L100409 (2021).
Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).
Zhang, T. & Murakami, S. Chiral phonons and pseudoangular momentum in nonsymmorphic systems. Phys. Rev. Res. 4, L012024 (2022).
Zhu, H. et al. Observation of chiral phonons. Science 359, 579 (2018).
Miao, H. et al. Observation of double Weyl phonons in parity-breaking FeSi. Phys. Rev. Lett. 121, 035302 (2018).
Ishito, K. et al. Truly chiral phonons in α-HgS. Nat. Phys. 19, 35–39 (2023).
Ueda, H. et al. Chiral phonons in quartz probed by x-rays. Nature 618, 946–950 (2023).