• Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).


    Google Scholar
     

  • Chang, C.-Z., Liu, C.-X. & MacDonald, A. H. Colloquium: Quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Sekine, A. & Nomura, K. Axion electrodynamics in topological materials. J. Appl. Phys. 129, 141101 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Sato, M. & Fujimoto, S. Majorana fermions and topology in superconductors. J. Phys. Soc. Jpn 85, 072001 (2016).

    ADS 

    Google Scholar
     

  • Sasaki, S. & Mizushima, T. Superconducting doped topological materials. Phys. C. 514, 206–217 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Neha, P., Biswas, P. K., Das, T. & Patnaik, S. Time-reversal symmetry breaking in topological superconductor Sr0.1Bi2Se3. Phys. Rev. Mater. 3, 074201 (2019).

    CAS 

    Google Scholar
     

  • Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se, Te). Nat. Mater. 18, 811–815 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, S. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 367, 189–192 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, S. K. et al. Time-reversal symmetry breaking superconductivity in three-dimensional Dirac semimetallic silicides. Phys. Rev. Res. 4, L012031 (2022).

    CAS 

    Google Scholar
     

  • Shang, T. et al. Unconventional superconductivity in topological Kramers nodal-line semimetals. Sci. Adv. 8, eabq6589 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukasa, K. et al. High-pressure phase diagrams of FeSe1−xTex: correlation between suppressed nematicity and enhanced superconductivity. Nat. Commun. 12, 381 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukasa, K. et al. Enhanced superconducting pairing strength near a pure nematic quantum critical point. Phys. Rev. X 13, 011032 (2023).

    CAS 

    Google Scholar
     

  • Shibauchi, T., Hanaguri, T. & Matsuda, Y. Exotic superconducting states in FeSe-based materials. J. Phys. Soc. Jpn 89, 102002 (2020).

    ADS 

    Google Scholar
     

  • Li, Y.-F. et al. Orbital ingredients and persistent Dirac surface state for the topological band structure in FeTe0.55Se0.45. Phys. Rev. X 14, 021043 (2024).

    CAS 

    Google Scholar
     

  • Chiu, C.-K., Machida, T., Huang, Y., Hanaguri, T. & Zhang, F.-C. Scalable Majorana vortex modes in iron-based superconductors. Sci. Adv. 6, eaay0443 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosoi, S. et al. Nematic quantum critical point without magnetism in FeSe1−xSx superconductors. Proc. Natl. Acad. Sci. USA 113, 8139–8143 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishida, K. et al. Pure nematic quantum critical point accompanied by a superconducting dome. Proc. Natl. Acad. Sci. USA 119, e2110501119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuura, K. et al. Two superconducting states with broken time-reversal symmetry in FeSe1−xSx. Proc. Natl. Acad. Sci. USA 120, e2208276120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, J., Chubukov, A. V. & Fernandes, R. M. Time-reversal symmetry-breaking nematic superconductivity in FeSe. Phys. Rev. B 98, 064508 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Watashige, T. et al. Evidence for time-reversal symmetry breaking of the superconducting state near twin-boundary interfaces in FeSe revealed by scanning tunneling spectroscopy. Phys. Rev. X 5, 031022 (2015).


    Google Scholar
     

  • Hashimoto, T. et al. Superconducting gap anisotropy sensitive to nematic domains in FeSe. Nat. Commun. 9, 282 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanaguri, T. et al. Two distinct superconducting pairing states divided by the nematic end point in FeSe1−xSex. Sci. Adv. 4, eaar6419 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizukami, Y. et al. Unusual crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein-condensate superconductivity in iron chalcogenides. Commun. Phys. 6, 183 (2023).

    CAS 

    Google Scholar
     

  • Sato, Y. et al. Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1−xSx. Proc. Natl. Acad. Sci. USA 115, 1227–1231 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Setty, C., Bhattacharyya, S., Cao, Y., Kreisel, A. & Hirschfeld, P. Topological ultranodal pair states in iron-based superconductors. Nat. Commun. 11, 523 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Electronic properties of the bulk and surface states of Fe1+yTe1−xSex. Nat. Mater. 20, 1221–1227 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koshika, Y. et al. Effects of annealing under tellurium vapor for Fe1.03Te0.8Se0.2 single crystals. J. Phys. Soc. Jpn 82, 023703 (2013).

    ADS 

    Google Scholar
     

  • Watanabe, T. et al. Electronic phase diagram of Fe1+yTe1−xSex revealed by magnetotransport measurements. Mod. Phys. Lett. B 34, 2040051 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Fujii, T., Uezono, Y., Otsuka, T., Hagisawa, S. & Watanabe, T. Electronic phase diagram in Te-annealed superconducting FeTe1−xSex revealed by magnetic susceptibility. Proc. 29th Int. Conf. Low. Temp. Phys. 38, 011027 (2023).


    Google Scholar
     

  • Tranquada, J. M., Xu, G. & Zaliznyak, I. A. Magnetism and superconductivity in Fe1+yTe1−xSex. J. Phys.: Condens. Matt. 32, 374003 (2020).

    CAS 

    Google Scholar
     

  • Zaki, N., Gu, G., Tsvelik, A., Wu, C. & Johnson, P. D. Time-reversal symmetry breaking in the Fe-chalcogenide superconductors. Proc. Natl Acad. Sci. USA 118, e2007241118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farhang, C. et al. Revealing the origin of time-reversal symmetry breaking in Fe-chalcogenide superconductor FeTe1−xSex. Phys. Rev. Lett. 130, 046702 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McLaughlin, N. J. et al. Strong correlation between superconductivity and ferromagnetism in an Fe-chalcogenide superconductor. Nano Lett. 21, 7277–7283 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y. S. et al. Direct observation of quantum anomalous vortex in Fe(Se, Te). Phys. Rev. X 13, 011046 (2023).

    CAS 

    Google Scholar
     

  • Qiu, G. et al. Emergent ferromagnetism with superconductivity in Fe (Te, Se) van der Waals Josephson junctions. Nat. Commun. 14, 6691 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luke, G. M. et al. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Matsumoto, M. & Sigrist, M. Quasiparticle states near the surface and the domain wall in a px ± ipy -wave superconductor. J. Phys. Soc. Jpn 68, 994–1007 (1999).

  • Bendele, M. et al. Coexistence of superconductivity and magnetism in FeSe1-x under pressure. Phys. Rev. B 85, 064517 (2012).

    ADS 

    Google Scholar
     

  • Biswas, P. K. et al. Muon-spin-spectroscopy study of the penetration depth of FeTe0.5Se0.5. Phys. Rev. B 81, 092510 (2010).

    ADS 

    Google Scholar
     

  • Sundar, S. et al. Ubiquitous spin freezing in the superconducting state of UTe2. Commun. Phys. 6, 24 (2023).

    CAS 

    Google Scholar
     

  • Cheung, S. C. et al. Disentangling superconducting and magnetic orders in NaFe1-xNixAs using muon spin rotation. Phys. Rev. B 97, 224508 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Khasanov, R. et al. Coexistence of incommensurate magnetism and superconductivity in Fe1+ySexTe1-x. Phys. Rev. B 80, 140511 (2009).

    ADS 

    Google Scholar
     

  • Hiraishi, M. et al. Bipartite magnetic parent phases in the iron oxypnictide superconductor. Nat. Phys. 10, 300–303 (2014).

    CAS 

    Google Scholar
     

  • Sigrist, M., Kuboki, K., Lee, P. A., Millis, A. J. & Rice, T. M. Influence of twin boundaries on Josephson junctions between high-temperature and conventional superconductors. Phys. Rev. B 53, 2835–2849 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Lado, J. L. & Sigrist, M. Detecting nonunitary multiorbital superconductivity with Dirac points at finite energies. Phys. Rev. Res. 1, 033107 (2019).

    CAS 

    Google Scholar
     

  • Hu, L.-H., Johnson, P. D. & Wu, C. Pairing symmetry and topological surface state in iron-chalcogenide superconductors. Phys. Rev. Res. 2, 022021 (2020).

    CAS 

    Google Scholar
     

  • Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    ADS 

    Google Scholar
     

  • Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar