• Chaachouay, N. & Zidane, L. Plant-derived natural products: a source for drug discovery and development. Drugs Drug Candidates. 3, 184–207. https://doi.org/10.3390/ddc3010011 (2024).

    Article 

    Google Scholar
     

  • Deresa, E. M. & Diriba, T. F. Phytochemicals as alternative fungicides for controlling plant diseases: a comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon 9, e13810. https://doi.org/10.1016/j.heliyon.2023.e13810 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lackner, M. et al. HPLC and GC-MS analyses of phytochemicals from Ficus carica leaf extract and essential oil along with their antimicrobial properties. J. Agric. Food Res. 19, 101687. https://doi.org/10.1016/j.jafr.2025.101687 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Salem, M. Z. M. et al. Bio-based chemical analysis of extracts from the biomass residues of Ceratonia siliqua and Ziziphus spina-christi with their bioactivities against molecularly identified fungi. Biomass Convers. Biorefin. 15, 18455–18471. https://doi.org/10.1007/s13399-025-06651-0 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Salem, M. Z. M., Abo-Elgat, W. A., Mansour, M. & Selim, S. Antifungal activity of the monoterpenes Carvacrol, p-Cymene, Eugenol, and Iso-Eugenol when applied to wood against Aspergillus flavus, Aspergillus niger, and Fusarium culmorum. BioRes 20, 393–412. https://doi.org/10.15376/biores.20.1.393-412 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hamad, Y. K. et al. Activity of plant extracts/essential oils against three plant pathogenic fungi and mosquito larvae: GC/MS analysis of bioactive compounds. BioRes 14, 4489–4511. https://doi.org/10.15376/biores.14.2.4489-4511 (2019).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Abd-Elkader, D. Y. et al. Post-harvest enhancing and Botrytis cinerea control of strawberry fruits using low cost and eco-friendly natural oils. Agronomy 11, 1246. https://doi.org/10.3390/agronomy11061246 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Särkinen, T. et al. A revision of the old world black nightshades (Morelloid clade of Solanum L., Solanaceae). PhytoKeys 106, 1–223. https://doi.org/10.3897/phytokeys.106.21991 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Campisi, A. et al. Antioxidant activities of Solanum nigrum L. leaf extracts determined in in vitro cellular models. Foods 8, 63. https://doi.org/10.3390/foods8020063 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gafforov, Y. et al. Exploring biodiversity and ethnobotanical significance of Solanum species in uzbekistan: unveiling the cultural wealth and ethnopharmacological uses. Front. Pharmacol. 14, 1287793. https://doi.org/10.3389/fphar.2023.1287793 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sastry, K. S., Mandal, B., Hammond, J., Scott, S. W. & Briddon, R. W. In Encyclopedia of Plant Viruses and Viroids (eds. Subramanya Sastry, K.) 2398–2401 (Springer, 2019).

  • Knapp, S., Särkinen, T. & Barboza, G. E. A revision of the South American species of the morelloid clade (Solanum L., Solanaceae). PhytoKeys 231, 1–342. https://doi.org/10.3897/phytokeys.231.100894 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaushik, D. et al. Evaluation of activities of Solanum nigrum fruit extract. Arch. Appl. Sci. Res. 1, 43–50 (2009).

    CAS 

    Google Scholar
     

  • Singh, R. P. Pharmacological study of Solanum nigrum fruit extract. J. Econ. Perspect. 15, 564–575 (2021).


    Google Scholar
     

  • Okello, O. P., Gweyi, J. P. O., Nawiri, M. P. & Musila, W. Effects of water stress on phenolic content and antioxidant activity of African nightshades. Asian J. Nat. Prod. Biochem. 15, 79–95. https://doi.org/10.13057/biofar/f150204 (2017).

    Article 

    Google Scholar
     

  • Jainu, M. & Devi, C. S. S. Antiulcerogenic and ulcer healing effects of Solanum nigrum (L.) on experimental ulcer models: possible mechanism for the Inhibition of acid formation. J. Ethnopharmacol. 104, 156–163. https://doi.org/10.1016/j.jep.2005.08.064 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Harikrishnan, R., Balasundaram, C., Jawahar, S. & Heo, M. S. Solanum nigrum enhancement of the immune response and disease resistance of tiger shrimp, Penaeus monodon against vibrio harveyi. Aquac 318, 67–73. https://doi.org/10.1016/j.aquaculture.2011.05.024 (2011).

    Article 

    Google Scholar
     

  • Ramesh, M., Anbuvannan, M. & Viruthagiri, G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta Mol. Biomol. Spectrosc. 136, 864–870. https://doi.org/10.1016/j.saa.2014.09.105 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thomas, S., Gunasangkaran, G., Arumugam, V. A. & Muthukrishnan, S. Synthesis and characterization of zinc oxide nanoparticles of Solanum nigrum and its anticancer activity via the induction of apoptosis in cervical cancer. Biol. Trace Elem. Res. 200, 2684–2697. https://doi.org/10.1007/s12011-021-02898-6 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saranya, T. et al. Green synthesis of selenium nanoparticles using Solanum nigrum fruit extract and its Anti-cancer efficacy against triple negative breast cancer. J. Clust Sci. 34, 1709–1719. https://doi.org/10.1007/s10876-022-02334-2 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Krithiga, N., Rajalakshmi, A. & Jayachitra, A. Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J. Nanosci. 2015, 928204. https://doi.org/10.1155/2015/928204 (2015).

  • Jian, Y. et al. Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. J. Adv. Res. 38, 1–12. https://doi.org/10.1016/j.jare.2021.09.006 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Otibi, F. et al. Comparative study of antifungal activity of two preparations of green silver nanoparticles from Portulaca oleracea extract. Saudi J. Biol. Sci. 29, 2772–2781. https://doi.org/10.1016/j.sjbs.2021.12.056 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashraf, H. et al. Phytofabricated silver nanoparticles unlock new potential in tomato plants by combating wilt infection and enhancing plant growth. Sci. Rep. 15, 10527. https://doi.org/10.1038/s41598-025-89724-4 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shan, S., Tuo, R., Xiao, Y. & Yang, G. Preparation and antifungal activity of naringin self-assembled silver nanoparticles and their application in Mandarins preservation. Postharvest Biol. Technol. 230, 113842. https://doi.org/10.1016/j.postharvbio.2025.113842 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Panwar, H. et al. In Nanofertilizers for Sustainable Agriculture: Assessing Impacts on Health, Environment, and Economy (eds. Pankaj, K. & Ramesh, C. D.) 79–99 (Springer Nature, 2025).

  • Abdallah, B. M., Rajendran, P. & Ali, E. M. Potential treatment of dermatophyte Trichophyton rubrum in rat model using topical green biosynthesized silver nanoparticles with Achillea Santolina extract. Molecules 28, 1536. https://doi.org/10.3390/molecules28041536 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, R. et al. Siderophore of plant growth promoting rhizobacterium origin reduces reactive oxygen species mediated injury in Solanum spp. Caused by fungal pathogens. J. Appl. Microbiol. 135, lxae036. https://doi.org/10.1093/jambio/lxae036 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wasule, D. L., Shingote, P. R. & Saxena, S. Exploitation of functionalized green nanomaterials for plant disease management. Discover Nano. 19, 118. https://doi.org/10.1186/s11671-024-04063-z (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buttimer, C. et al. Bacteriophages and bacterial plant diseases. Front. microbiol. 8, 34. https://doi.org/10.3389/fmicb.2017.00034 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tahat, M. M., Aldakil, H. A. & Alananbeh, K. M. First report of Damping-Off disease caused by Fusarium oxysporum on Pinus pinea in Jordan. Plant. Dis. 105, 4153. https://doi.org/10.1094/PDIS-10-20-2135-PDN (2021).

    Article 

    Google Scholar
     

  • Luo, X. & Yu, C. First report of damping-off disease caused by Fusarium oxysporum in Pinus massoniana in China. J. Plant. Dis. Prot. 127, 401–409. https://doi.org/10.1007/s41348-020-00303-3 (2020).

    Article 

    Google Scholar
     

  • Drenkhan, R. et al. Global geographic distribution and host range of Fusarium circinatum, the causal agent of pine pitch canker. Forests 11, 724. https://doi.org/10.3390/f11070724 (2020).

    Article 

    Google Scholar
     

  • Zhou, Y. et al. Microfungi associated with Peach branch diseases in China. J. Fungi. 10, 217. https://doi.org/10.3390/jof10030217 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tapia-Vázquez, I. et al. Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in mexico: biology, current control strategies, and perspectives. World J. Microbiol. Biotechnol. 38, 26. https://doi.org/10.1007/s11274-021-03211-2 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Shakeel, Q., Li, G., Long, Y. & Tahir, H. A. S. In Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches (eds. Imran, U. H. & Siddra, I.) 295–327 (Springer International Publishing, (2020).

  • Elvira-Recuenco, M. et al. Potential interactions between invasive Fusarium circinatum and other pine pathogens in Europe. Forests 11, 7. https://doi.org/10.3390/f11010007 (2019).

    Article 

    Google Scholar
     

  • Yarmalovich, V. A. & Siaredzich, M. O. Phoma blight of planting stock of Pinus sylvestris L. and Picea abies L. in forest nurseries of Belarus. Bull. Transilvania Univ. Brasov Ser. II: Forestry• Wood Industry• Agricultural Food Eng. 2019, 27–36. https://doi.org/10.31926/but.fwiafe.2019.12.61.2.2 (2019).

  • Millar, C., Buckey, J., Hagino, R. & Arcaris, S. Spread of pitch canker infections of Monterey pine (Pinus radiata) in Cambria, California. Calif. Ecol. Conserv. Res. 8, 1–11. https://doi.org/10.21973/N3JH3K (2024).

    Article 

    Google Scholar
     

  • Nazarov, P. A., Baleev, D. N., Ivanova, M. I., Sokolova, L. M. & Karakozova, M. V. Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Nat. 12, 46–59. https://doi.org/10.32607/actanaturae.11026 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bont, L. G. et al. Improving forest management by implementing best suitable timber harvesting methods. J. Environ. Manage. 302, 114099. https://doi.org/10.1016/j.jenvman.2021.114099 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • EL-Hefny, M. & Mohamed, A. A. Enhancing the growth of Artemisia abrotanum by magnesium and Tropaeolum majus extract in a field experiment along with the antibacterial activity of the isolated essential oils. Horticulturae 11, 328. https://doi.org/10.3390/horticulturae11030328 (2025).

  • Ansari, M. et al. Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant. Sci. Rep. 13, 18048. https://doi.org/10.1038/s41598-023-45038-x (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salem, M. Z. M., EL-Shanhorey, N. A., Mohamed, N. H. & Mohamed, A. A. Phenolic and flavonoid compounds from leaves and branches of Schotia brachypetala for the development of biofungicide for wood protection. BioRes 20, 1069–1087. https://doi.org/10.15376/biores.20.1.1069-1087 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Maria, A. A., Salem, R. H., Salama, M. A. & Khalil, A. M. M. Antioxidant-Rich biodegradable films: incorporating date phenolic extracts into Polyvinyl alcohol biofilms for strawberry preservation. J. Food Dairy. Sci. 15, 203–217. https://doi.org/10.21608/jfds.2024.328102.1171 (2024).

    Article 

    Google Scholar
     

  • Bernardo, W. L. C. et al. Biosynthesis of silver nanoparticles from Syzygium cumini leaves and their potential effects on odontogenic pathogens and biofilms. Front. microbiol. 13, 995521. https://doi.org/10.3389/fmicb.2022.995521 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elkobrosy, D. et al. Nematocidal and bactericidal activities of green synthesized silver nanoparticles mediated by Ficus sycomorus leaf extract. Life 13, 1083. https://doi.org/10.3390/life13051083 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sevinc-Sasmaz, C., Erci, F., Torlak, E. & Yöntem, M. Characterization of silver nanoparticles synthesized using Hypericum perforatum L. and their effects on Staphylococcus aureus. Microsc Res. Tech. 88, 2321–2332. https://doi.org/10.1002/jemt.24862 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puchalski, M. et al. The study of silver nanoparticles by scanning electron microscopy, energy dispersive X-ray analysis and scanning tunnelling microscopy. Mater. Sci. -Pol. 25, 473–478 (2007).

    CAS 

    Google Scholar
     

  • Priyadarshini, S., Sulava, S., Bhol, R. & Jena, S. Green synthesis of silver nanoparticles using Azadirachta indica and Ocimum sanctum leaf extract. Curr. Sci. 117, 1300–1307 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Abdellatif, A. A. H. et al. Green synthesis of silver nanoparticles incorporated aromatherapies utilized for their antioxidant and antimicrobial activities against some clinical bacterial isolates. Bioinorg. Chem. 2022, 2432758. https://doi.org/10.1155/2022/2432758 (2022).

  • Senanayake, I. et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11, 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20 (2020).

    Article 

    Google Scholar
     

  • Mohamed, A. A. & Gomaa, F. H. Molecular characterization and biological control of some rice seed-borne fungal pathogens. J. Phytopathol. Dis. Manag. 6, 40–53 (2019).


    Google Scholar
     

  • Shakam, H. M., Mohamed, A. A. & Salem, M. Z. M. Down-regulatory effect of essential oils on fungal growth and Tri4 gene expression for some Fusarium oxysporum strains: GC-MS analysis of essential oils. Arch. Phytopathol. Plant. Prot. 55, 951–972. https://doi.org/10.1080/03235408.2022.2064081 (2022).

    Article 
    CAS 

    Google Scholar
     

  • White, T. J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: Guide Methods Applications 315–322 (1990).

  • Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • khatab, E. S. & Mohamed, A. A. Effectiveness of Nano-emulsions and essential oil of fennel and their major components against Botrytis cinerea. Egypt. J. Phytopathol. 52, 35–46. https://doi.org/10.21608/ejp.2024.386118 (2024).

    Article 

    Google Scholar
     

  • Iturritxa, E. et al. Biocontrol of Fusarium circinatum infection of young Pinus radiata trees. Forests 8, 32. https://doi.org/10.3390/f8020032 (2017).

    Article 

    Google Scholar
     

  • Hlaiem, S. et al. Characterization and pathogenicity of phytopathogenic fungi associated with Pinus pinea in Northeastern tunisia: implications for forest health in the mediterranean basin. Plant. Pathol. Quara. 14, 118–124 (2024).


    Google Scholar
     

  • Elbanoby, N. E., El-Settawy, A. A. A., Mohamed, A. A. & Salem, M. Z. M. Phytochemicals derived from Leucaena leucocephala (Lam.) de Wit (Fabaceae) biomass and their antimicrobial and antioxidant activities: HPLC analysis of extracts. Biomass Convers. Bioref. 14, 14593–14609. https://doi.org/10.1007/s13399-022-03420-1 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Erhonyota, C., Edo, G. I. & Onoharigho, F. O. Comparison of poison plate and agar well diffusion method determining the antifungal activity of protein fractions. Acta Ecol. Sin. 43, 684–689. https://doi.org/10.1016/j.chnaes.2022.08.006 (2023).

    Article 

    Google Scholar
     

  • Jenifer, A. A. et al. Green synthesis and characterization of silver nanoparticles (AgNPs) using leaf extract of Solanum nigrum and assessment of toxicity in vertebrate and invertebrate aquatic animals. J. Cluster Sci. 31, 989–1002. https://doi.org/10.1007/s10876-019-01704-7 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sengottaiyan, A. et al. Synthesis and characterization of Solanum nigrum-mediated silver nanoparticles and its protective effect on alloxan-induced diabetic rats. J. Nanostruct. Chem. 6, 41–48. https://doi.org/10.1007/s40097-015-0178-6 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shahzadi, S., Fatima, S., ul ain, Q., Shafiq, Z. & Janjua, M. R. S. A. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Adv. 15, 3858–3903. https://doi.org/10.1039/D4RA07519F (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, T. K. et al. Mapping the progress in surface plasmon resonance analysis of phytogenic silver nanoparticles with colorimetric sensing applications. Chem. Biodivers. 20, e202300510. https://doi.org/10.1002/cbdv.202300510 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rawani, A., Ghosh, A. & Chandra, G. Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop. 128, 613–622. https://doi.org/10.1016/j.actatropica.2013.09.007 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parveen, S. et al. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb. Pathog. 115, 287–292. https://doi.org/10.1016/j.micpath.2017.12.068 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osonga, F. J. et al. Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: a model study as potential fungicides. Molecules 25, 2682. https://doi.org/10.3390/molecules25112682 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. S., Hung, Y. C., Liau, I. & Huang, G. S. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 4, 858. https://doi.org/10.1007/s11671-009-9334-6 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, Z. K. et al. The antifungal effect of silver nanoparticles on Trichosporon asahii. J. Microbiol. Immunol. Infect. 49, 182–188. https://doi.org/10.1016/j.jmii.2014.04.013 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wasilewska, A. et al. Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. Food Chem. 400, 133960. https://doi.org/10.1016/j.foodchem.2022.133960 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Marin, L. E., Juarez-Moreno, K., Vilchis-Nestor, A. R. & Castro-Longoria, E. Highly antifungal activity of biosynthesized copper oxide nanoparticles against Candida albicans. Nanomaterials 12, 3856. https://doi.org/10.3390/nano12213856 (2022).

  • Abegunde, S. M., Afolayan, B. O. & Ilesanmi, T. M. Ensuring sustainable plant-assisted nanoparticles synthesis through process standardization and reproducibility: challenges and future directions – a review. Sustain. Chem. One World. 3, 100014. https://doi.org/10.1016/j.scowo.2024.100014 (2024).

    Article 

    Google Scholar
     

  • Nguyen, N. T. T. et al. Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review. Environ. Chem. Lett. 20, 2531–2571. https://doi.org/10.1007/s10311-022-01425-w (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salem, M. Z. M. et al. Plants-derived bioactives: novel utilization as antimicrobial, antioxidant and phytoreducing agents for the biosynthesis of metallic nanoparticles. Microb. Pathog. 158, 105107. https://doi.org/10.1016/j.micpath.2021.105107 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jinu, U. et al. Biofabrication of cubic phase silver nanoparticles loaded with phytochemicals from Solanum nigrum leaf extracts for potential Antibacterial, antibiofilm and antioxidant activities against MDR human pathogens. J. Clust Sci. 28, 489–505. https://doi.org/10.1007/s10876-016-1125-5 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Esther Arland, S. & Kumar, J. Green and chemical syntheses of silver nanoparticles: comparative and comprehensive study on characterization, therapeutic potential, and cytotoxicity. Eur. J. Med. Chem. Rep. 11, 100168. https://doi.org/10.1016/j.ejmcr.2024.100168 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Gole, A. et al. Pepsin – Gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17, 1674–1679. https://doi.org/10.1021/la001164w (2001).

    Article 
    CAS 

    Google Scholar
     

  • Prasad, K. S. et al. Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afr. J. Biotechnol. 10, 8122. https://doi.org/10.5897/AJB11.394 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Shumi, G. et al. Biosynthesis of silver nanoparticles functionalized with histidine and phenylalanine amino acids for potential antioxidant and antibacterial activities. ACS Omega. 8, 24371–24386. https://doi.org/10.1021/acsomega.3c01910 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, N. K. et al. Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega. 7, 27004–27020. https://doi.org/10.1021/acsomega.2c01400 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shankar, S. & Rhim, J. W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr. Polym. 130, 353–363. https://doi.org/10.1016/j.carbpol.2015.05.018 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shafey, A. M. E. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green. Process. Synth. 9, 304–339. https://doi.org/10.1515/gps-2020-0031 (2020).

    Article 

    Google Scholar
     

  • Oza, G. et al. Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. J. Mater. Sci. 55, 1309–1330. https://doi.org/10.1007/s10853-019-04121-3 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yadav, S., Nadar, T., Lakkakula, J. & Wagh, N. S. In Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities (eds. Maulin P. S et al.) 147–188 (Springer International Publishing, 2024).

  • Villagrán, Z. et al. Plant-based extracts as reducing, capping, and stabilizing agents for the green synthesis of inorganic nanoparticles. Resour 13, 70. https://doi.org/10.3390/resources13060070 (2024).

    Article 

    Google Scholar
     

  • Mani, M. et al. Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity. Environ. Res. 202, 111627. https://doi.org/10.1016/j.envres.2021.111627 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alam, M. N., Roy, S., Anisuzzaman, S. M. & Rafiquzzaman, M. Antioxidant activity of the ethanolic extracts of leaves, stems and fruits of Solanum nigrum. Pharmacogn Commun. 2, 67–71 (2012).

    Article 

    Google Scholar
     

  • Shenbagam, M. & Sulthana, R. A review: Solanum nigrum and its Pharmacological activities. Int. J. Res. App Sci. Eng. Tech. 10, 916–923 (2022).

    Article 

    Google Scholar
     

  • Ravi, V., Saleem, T., Maiti, P., Gauthaman, K. & Ramamurthy, J. Phytochemical and Pharmacological evaluation of Solanum nigrum Linn. Afr. J. Pharm. Pharmacol. 3, 454–457 (2009).


    Google Scholar
     

  • Mukhopadhyay, G. et al. Ethno-pharmacological activity of Solanum nigrum. J. Pharm. Innov. 7, 692–698 (2018).

    CAS 

    Google Scholar
     

  • Huang, H. C., Syu, K. Y. & Lin, J. K. Chemical composition of Solanum nigrum Linn extract and induction of autophagy by leaf water extract and its major flavonoids in AU565 breast cancer cells. J. Agric. Food Chem. 58, 8699–8708. https://doi.org/10.1021/jf101003v (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arulmozhi, V., Krishnaveni, M., Karthishwaran, K., Dhamodharan, G. & Mirunalini, S. Antioxidant and antihyperlipidemic effect of Solanum nigrum fruit extract on the experimental model against chronic ethanol toxicity. Pharmacogn Mag. 6, 42–50. https://doi.org/10.4103/0973-1296.59965 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. & De, B. Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int. J. Pharm. Sci. Rev. Res. 3, 91–100 (2010).

    CAS 

    Google Scholar
     

  • Prakash, S. & Jain, A. K. Antifungal activity and preliminary phytochemical studies of leaf extract of Solanum nigrum Linn. Int. J. Pharm. Pharm. Sci. 3, 352–355 (2011).


    Google Scholar
     

  • Ikeda, T., Tsumagari, H. & Nohara, T. Steroidal oligoglycosides from Solanum nigrum. Chem. Pharm. Bull. 48, 1062–1064. https://doi.org/10.1248/cpb.48.1062 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Katsura, H., Tsukiyama, R. I., Suzuki, A. & Kobayashi, M. In vitro antimicrobial activities of Bakuchiol against oral microorganisms. Antimicrob. Agents Chemother. 45, 3009–3013. https://doi.org/10.1128/aac.45.11.3009-3013.2001 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Rocha, C. et al. Evaluation of the antifungal effect of chlorogenic acid against strains of Candida spp. Resistant to fluconazole: apoptosis induction and in Silico analysis of the possible mechanisms of action. J. Med. Microbiol. 2022, 71. https://doi.org/10.1099/jmm.0.001526 (2022).

  • Liu, D., Meng, S., Xiang, Z., He, N. & Yang, G. Antimicrobial mechanism of reaction products of Morus notabilis (mulberry) polyphenol oxidases and chlorogenic acid. Phytochem 163, 1–10. https://doi.org/10.1016/j.phytochem.2019.03.026 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liberato, I. et al. Gallic acid leads to cell death of Candida albicans by the apoptosis mechanism. Future Microbiol. 17, 599–606. https://doi.org/10.2217/fmb-2021-0139 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akhtar, N. et al. Potent antifungal properties of Gallic acid in Sarcochlamys pulcherrima against Candida auris. BioTechnology 104, 105–119. https://doi.org/10.5114/bta.2023.127202 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Srinivasulu, C., Ramgopal, M., Ramanjaneyulu, G., Anuradha, C. M. & Suresh Kumar, C. Syringic acid (SA) – a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed. Pharmacother. 108, 547–557. https://doi.org/10.1016/j.biopha.2018.09.069 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendoza, L. et al. Improvement of the antifungal activity against Botrytis cinerea of syringic acid, a phenolic acid from grape pomace. J. Chil. Chem. Soc. 61, 3039–3042. https://doi.org/10.4067/S0717-97072016000300006 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hashem, A. H. et al. Antifungal activity of biosynthesized silver nanoparticles (AgNPs) against aspergilli causing aspergillosis: ultrastructure study. J. Funct. Biomater. 13, 242. https://doi.org/10.3390/jfb13040242 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, T., Yasmin, A. & Townley, H. E. An evaluation of the activity of biologically synthesized silver nanoparticles against bacteria, fungi and mammalian cell lines. Colloids Surf. B Biointerfaces. 194, 111156. https://doi.org/10.1016/j.colsurfb.2020.111156 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalil, N. M., El-Ghany, A. & Rodríguez-Couto, S. M. N. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere 218, 477–486. https://doi.org/10.1016/j.chemosphere.2018.11.129 (2019).

  • Asghar, M. A., Zahir, E., Asghar, M. A., Iqbal, J. & Rehman, A. A. Facile, one-pot biosynthesis and characterization of iron, copper and silver nanoparticles using Syzygium cumini leaf extract: as an effective antimicrobial and aflatoxin B1 adsorption agents. PLOS ONE. 15, e0234964. https://doi.org/10.1371/journal.pone.0234964 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jebril, S., Ben Jenana, K., Dridi, C. & R. & Green synthesis of silver nanoparticles using Melia Azedarach leaf extract and their antifungal activities: in vitro and in vivo. Mater. Chem. Phys. 248, 122898. https://doi.org/10.1016/j.matchemphys.2020.122898 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Al-khattaf, F. S. Gold and silver nanoparticles: green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi J. Biol. Sci. 28, 3624–3631. https://doi.org/10.1016/j.sjbs.2021.03.078 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matras, E., Gorczyca, A., Przemieniecki, S. W. & Oćwieja, M. Surface properties-dependent antifungal activity of silver nanoparticles. Sci. Rep. 12, 18046. https://doi.org/10.1038/s41598-022-22659-2 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akter, M. et al. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J. Adv. Res. 9, 1–16. https://doi.org/10.1016/j.jare.2017.10.008 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumari, M. et al. An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pestic Biochem. Physiol. 157, 45–52. https://doi.org/10.1016/j.pestbp.2019.03.005 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, H. et al. Antifungal activity and mechanisms of AgNPs and their combination with azoxystrobin against Magnaporthe oryzae. Environ. Sci. Nano. 10, 2412–2426. https://doi.org/10.1039/D3EN00168G (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jo, Y. K., Kim, B. H. & Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant. Dis. 93, 1037–1043. https://doi.org/10.1094/PDIS-93-10-1037 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. The antifungal activity and mechanism of silver nanoparticles against four pathogens causing Kiwifruit post-harvest rot. Front. microbiol. 13, 988633. https://doi.org/10.3389/fmicb.2022.988633 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutiérrez, J. A. et al. High antifungal activity against Candida species of monometallic and bimetallic nanoparticles synthesized in nanoreactors. ACS Biomater. Sci. Eng. 4, 647–653. https://doi.org/10.1021/acsbiomaterials.7b00511 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nasrollahzadeh, M. & Mohammad Sajadi, S. Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: catalytic properties of the resulting particles. J. Colloid Interface Sci. 462, 243–251. https://doi.org/10.1016/j.jcis.2015.09.065 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rasmiya Begum, S. L. & Jayawardana, N. U. Green synthesized metal nanoparticles as an ecofriendly measure for plant growth stimulation and disease resistance. Plant. Nano Biol. 3, 100028. https://doi.org/10.1016/j.plana.2023.100028 (2023).

    Article 

    Google Scholar
     

  • El-Hefny, M., Mohamed, A. A., Abdelkhalek, A. & Salem, M. Z. M. Productivity and phytochemicals of Asclepias Curassavica in response to compost and silver nanoparticles application: HPLC analysis and antibacterial activity of extracts. Plants 12, 2274. https://doi.org/10.3390/plants12122274 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar