Chaachouay, N. & Zidane, L. Plant-derived natural products: a source for drug discovery and development. Drugs Drug Candidates. 3, 184–207. https://doi.org/10.3390/ddc3010011 (2024).
Deresa, E. M. & Diriba, T. F. Phytochemicals as alternative fungicides for controlling plant diseases: a comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon 9, e13810. https://doi.org/10.1016/j.heliyon.2023.e13810 (2023).
Lackner, M. et al. HPLC and GC-MS analyses of phytochemicals from Ficus carica leaf extract and essential oil along with their antimicrobial properties. J. Agric. Food Res. 19, 101687. https://doi.org/10.1016/j.jafr.2025.101687 (2025).
Salem, M. Z. M. et al. Bio-based chemical analysis of extracts from the biomass residues of Ceratonia siliqua and Ziziphus spina-christi with their bioactivities against molecularly identified fungi. Biomass Convers. Biorefin. 15, 18455–18471. https://doi.org/10.1007/s13399-025-06651-0 (2025).
Salem, M. Z. M., Abo-Elgat, W. A., Mansour, M. & Selim, S. Antifungal activity of the monoterpenes Carvacrol, p-Cymene, Eugenol, and Iso-Eugenol when applied to wood against Aspergillus flavus, Aspergillus niger, and Fusarium culmorum. BioRes 20, 393–412. https://doi.org/10.15376/biores.20.1.393-412 (2025).
Hamad, Y. K. et al. Activity of plant extracts/essential oils against three plant pathogenic fungi and mosquito larvae: GC/MS analysis of bioactive compounds. BioRes 14, 4489–4511. https://doi.org/10.15376/biores.14.2.4489-4511 (2019).
Abd-Elkader, D. Y. et al. Post-harvest enhancing and Botrytis cinerea control of strawberry fruits using low cost and eco-friendly natural oils. Agronomy 11, 1246. https://doi.org/10.3390/agronomy11061246 (2021).
Särkinen, T. et al. A revision of the old world black nightshades (Morelloid clade of Solanum L., Solanaceae). PhytoKeys 106, 1–223. https://doi.org/10.3897/phytokeys.106.21991 (2018).
Campisi, A. et al. Antioxidant activities of Solanum nigrum L. leaf extracts determined in in vitro cellular models. Foods 8, 63. https://doi.org/10.3390/foods8020063 (2019).
Gafforov, Y. et al. Exploring biodiversity and ethnobotanical significance of Solanum species in uzbekistan: unveiling the cultural wealth and ethnopharmacological uses. Front. Pharmacol. 14, 1287793. https://doi.org/10.3389/fphar.2023.1287793 (2024).
Sastry, K. S., Mandal, B., Hammond, J., Scott, S. W. & Briddon, R. W. In Encyclopedia of Plant Viruses and Viroids (eds. Subramanya Sastry, K.) 2398–2401 (Springer, 2019).
Knapp, S., Särkinen, T. & Barboza, G. E. A revision of the South American species of the morelloid clade (Solanum L., Solanaceae). PhytoKeys 231, 1–342. https://doi.org/10.3897/phytokeys.231.100894 (2023).
Kaushik, D. et al. Evaluation of activities of Solanum nigrum fruit extract. Arch. Appl. Sci. Res. 1, 43–50 (2009).
Singh, R. P. Pharmacological study of Solanum nigrum fruit extract. J. Econ. Perspect. 15, 564–575 (2021).
Okello, O. P., Gweyi, J. P. O., Nawiri, M. P. & Musila, W. Effects of water stress on phenolic content and antioxidant activity of African nightshades. Asian J. Nat. Prod. Biochem. 15, 79–95. https://doi.org/10.13057/biofar/f150204 (2017).
Jainu, M. & Devi, C. S. S. Antiulcerogenic and ulcer healing effects of Solanum nigrum (L.) on experimental ulcer models: possible mechanism for the Inhibition of acid formation. J. Ethnopharmacol. 104, 156–163. https://doi.org/10.1016/j.jep.2005.08.064 (2006).
Harikrishnan, R., Balasundaram, C., Jawahar, S. & Heo, M. S. Solanum nigrum enhancement of the immune response and disease resistance of tiger shrimp, Penaeus monodon against vibrio harveyi. Aquac 318, 67–73. https://doi.org/10.1016/j.aquaculture.2011.05.024 (2011).
Ramesh, M., Anbuvannan, M. & Viruthagiri, G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta Mol. Biomol. Spectrosc. 136, 864–870. https://doi.org/10.1016/j.saa.2014.09.105 (2015).
Thomas, S., Gunasangkaran, G., Arumugam, V. A. & Muthukrishnan, S. Synthesis and characterization of zinc oxide nanoparticles of Solanum nigrum and its anticancer activity via the induction of apoptosis in cervical cancer. Biol. Trace Elem. Res. 200, 2684–2697. https://doi.org/10.1007/s12011-021-02898-6 (2022).
Saranya, T. et al. Green synthesis of selenium nanoparticles using Solanum nigrum fruit extract and its Anti-cancer efficacy against triple negative breast cancer. J. Clust Sci. 34, 1709–1719. https://doi.org/10.1007/s10876-022-02334-2 (2023).
Krithiga, N., Rajalakshmi, A. & Jayachitra, A. Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J. Nanosci. 2015, 928204. https://doi.org/10.1155/2015/928204 (2015).
Jian, Y. et al. Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. J. Adv. Res. 38, 1–12. https://doi.org/10.1016/j.jare.2021.09.006 (2022).
Al-Otibi, F. et al. Comparative study of antifungal activity of two preparations of green silver nanoparticles from Portulaca oleracea extract. Saudi J. Biol. Sci. 29, 2772–2781. https://doi.org/10.1016/j.sjbs.2021.12.056 (2022).
Ashraf, H. et al. Phytofabricated silver nanoparticles unlock new potential in tomato plants by combating wilt infection and enhancing plant growth. Sci. Rep. 15, 10527. https://doi.org/10.1038/s41598-025-89724-4 (2025).
Shan, S., Tuo, R., Xiao, Y. & Yang, G. Preparation and antifungal activity of naringin self-assembled silver nanoparticles and their application in Mandarins preservation. Postharvest Biol. Technol. 230, 113842. https://doi.org/10.1016/j.postharvbio.2025.113842 (2025).
Panwar, H. et al. In Nanofertilizers for Sustainable Agriculture: Assessing Impacts on Health, Environment, and Economy (eds. Pankaj, K. & Ramesh, C. D.) 79–99 (Springer Nature, 2025).
Abdallah, B. M., Rajendran, P. & Ali, E. M. Potential treatment of dermatophyte Trichophyton rubrum in rat model using topical green biosynthesized silver nanoparticles with Achillea Santolina extract. Molecules 28, 1536. https://doi.org/10.3390/molecules28041536 (2023).
Kumar, R. et al. Siderophore of plant growth promoting rhizobacterium origin reduces reactive oxygen species mediated injury in Solanum spp. Caused by fungal pathogens. J. Appl. Microbiol. 135, lxae036. https://doi.org/10.1093/jambio/lxae036 (2024).
Wasule, D. L., Shingote, P. R. & Saxena, S. Exploitation of functionalized green nanomaterials for plant disease management. Discover Nano. 19, 118. https://doi.org/10.1186/s11671-024-04063-z (2024).
Buttimer, C. et al. Bacteriophages and bacterial plant diseases. Front. microbiol. 8, 34. https://doi.org/10.3389/fmicb.2017.00034 (2017).
Tahat, M. M., Aldakil, H. A. & Alananbeh, K. M. First report of Damping-Off disease caused by Fusarium oxysporum on Pinus pinea in Jordan. Plant. Dis. 105, 4153. https://doi.org/10.1094/PDIS-10-20-2135-PDN (2021).
Luo, X. & Yu, C. First report of damping-off disease caused by Fusarium oxysporum in Pinus massoniana in China. J. Plant. Dis. Prot. 127, 401–409. https://doi.org/10.1007/s41348-020-00303-3 (2020).
Drenkhan, R. et al. Global geographic distribution and host range of Fusarium circinatum, the causal agent of pine pitch canker. Forests 11, 724. https://doi.org/10.3390/f11070724 (2020).
Zhou, Y. et al. Microfungi associated with Peach branch diseases in China. J. Fungi. 10, 217. https://doi.org/10.3390/jof10030217 (2024).
Tapia-Vázquez, I. et al. Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in mexico: biology, current control strategies, and perspectives. World J. Microbiol. Biotechnol. 38, 26. https://doi.org/10.1007/s11274-021-03211-2 (2022).
Shakeel, Q., Li, G., Long, Y. & Tahir, H. A. S. In Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches (eds. Imran, U. H. & Siddra, I.) 295–327 (Springer International Publishing, (2020).
Elvira-Recuenco, M. et al. Potential interactions between invasive Fusarium circinatum and other pine pathogens in Europe. Forests 11, 7. https://doi.org/10.3390/f11010007 (2019).
Yarmalovich, V. A. & Siaredzich, M. O. Phoma blight of planting stock of Pinus sylvestris L. and Picea abies L. in forest nurseries of Belarus. Bull. Transilvania Univ. Brasov Ser. II: Forestry• Wood Industry• Agricultural Food Eng. 2019, 27–36. https://doi.org/10.31926/but.fwiafe.2019.12.61.2.2 (2019).
Millar, C., Buckey, J., Hagino, R. & Arcaris, S. Spread of pitch canker infections of Monterey pine (Pinus radiata) in Cambria, California. Calif. Ecol. Conserv. Res. 8, 1–11. https://doi.org/10.21973/N3JH3K (2024).
Nazarov, P. A., Baleev, D. N., Ivanova, M. I., Sokolova, L. M. & Karakozova, M. V. Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Nat. 12, 46–59. https://doi.org/10.32607/actanaturae.11026 (2020).
Bont, L. G. et al. Improving forest management by implementing best suitable timber harvesting methods. J. Environ. Manage. 302, 114099. https://doi.org/10.1016/j.jenvman.2021.114099 (2022).
EL-Hefny, M. & Mohamed, A. A. Enhancing the growth of Artemisia abrotanum by magnesium and Tropaeolum majus extract in a field experiment along with the antibacterial activity of the isolated essential oils. Horticulturae 11, 328. https://doi.org/10.3390/horticulturae11030328 (2025).
Ansari, M. et al. Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant. Sci. Rep. 13, 18048. https://doi.org/10.1038/s41598-023-45038-x (2023).
Salem, M. Z. M., EL-Shanhorey, N. A., Mohamed, N. H. & Mohamed, A. A. Phenolic and flavonoid compounds from leaves and branches of Schotia brachypetala for the development of biofungicide for wood protection. BioRes 20, 1069–1087. https://doi.org/10.15376/biores.20.1.1069-1087 (2025).
Maria, A. A., Salem, R. H., Salama, M. A. & Khalil, A. M. M. Antioxidant-Rich biodegradable films: incorporating date phenolic extracts into Polyvinyl alcohol biofilms for strawberry preservation. J. Food Dairy. Sci. 15, 203–217. https://doi.org/10.21608/jfds.2024.328102.1171 (2024).
Bernardo, W. L. C. et al. Biosynthesis of silver nanoparticles from Syzygium cumini leaves and their potential effects on odontogenic pathogens and biofilms. Front. microbiol. 13, 995521. https://doi.org/10.3389/fmicb.2022.995521 (2022).
Elkobrosy, D. et al. Nematocidal and bactericidal activities of green synthesized silver nanoparticles mediated by Ficus sycomorus leaf extract. Life 13, 1083. https://doi.org/10.3390/life13051083 (2023).
Sevinc-Sasmaz, C., Erci, F., Torlak, E. & Yöntem, M. Characterization of silver nanoparticles synthesized using Hypericum perforatum L. and their effects on Staphylococcus aureus. Microsc Res. Tech. 88, 2321–2332. https://doi.org/10.1002/jemt.24862 (2025).
Puchalski, M. et al. The study of silver nanoparticles by scanning electron microscopy, energy dispersive X-ray analysis and scanning tunnelling microscopy. Mater. Sci. -Pol. 25, 473–478 (2007).
Priyadarshini, S., Sulava, S., Bhol, R. & Jena, S. Green synthesis of silver nanoparticles using Azadirachta indica and Ocimum sanctum leaf extract. Curr. Sci. 117, 1300–1307 (2019).
Abdellatif, A. A. H. et al. Green synthesis of silver nanoparticles incorporated aromatherapies utilized for their antioxidant and antimicrobial activities against some clinical bacterial isolates. Bioinorg. Chem. 2022, 2432758. https://doi.org/10.1155/2022/2432758 (2022).
Senanayake, I. et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11, 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20 (2020).
Mohamed, A. A. & Gomaa, F. H. Molecular characterization and biological control of some rice seed-borne fungal pathogens. J. Phytopathol. Dis. Manag. 6, 40–53 (2019).
Shakam, H. M., Mohamed, A. A. & Salem, M. Z. M. Down-regulatory effect of essential oils on fungal growth and Tri4 gene expression for some Fusarium oxysporum strains: GC-MS analysis of essential oils. Arch. Phytopathol. Plant. Prot. 55, 951–972. https://doi.org/10.1080/03235408.2022.2064081 (2022).
White, T. J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: Guide Methods Applications 315–322 (1990).
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).
khatab, E. S. & Mohamed, A. A. Effectiveness of Nano-emulsions and essential oil of fennel and their major components against Botrytis cinerea. Egypt. J. Phytopathol. 52, 35–46. https://doi.org/10.21608/ejp.2024.386118 (2024).
Iturritxa, E. et al. Biocontrol of Fusarium circinatum infection of young Pinus radiata trees. Forests 8, 32. https://doi.org/10.3390/f8020032 (2017).
Hlaiem, S. et al. Characterization and pathogenicity of phytopathogenic fungi associated with Pinus pinea in Northeastern tunisia: implications for forest health in the mediterranean basin. Plant. Pathol. Quara. 14, 118–124 (2024).
Elbanoby, N. E., El-Settawy, A. A. A., Mohamed, A. A. & Salem, M. Z. M. Phytochemicals derived from Leucaena leucocephala (Lam.) de Wit (Fabaceae) biomass and their antimicrobial and antioxidant activities: HPLC analysis of extracts. Biomass Convers. Bioref. 14, 14593–14609. https://doi.org/10.1007/s13399-022-03420-1 (2024).
Erhonyota, C., Edo, G. I. & Onoharigho, F. O. Comparison of poison plate and agar well diffusion method determining the antifungal activity of protein fractions. Acta Ecol. Sin. 43, 684–689. https://doi.org/10.1016/j.chnaes.2022.08.006 (2023).
Jenifer, A. A. et al. Green synthesis and characterization of silver nanoparticles (AgNPs) using leaf extract of Solanum nigrum and assessment of toxicity in vertebrate and invertebrate aquatic animals. J. Cluster Sci. 31, 989–1002. https://doi.org/10.1007/s10876-019-01704-7 (2020).
Sengottaiyan, A. et al. Synthesis and characterization of Solanum nigrum-mediated silver nanoparticles and its protective effect on alloxan-induced diabetic rats. J. Nanostruct. Chem. 6, 41–48. https://doi.org/10.1007/s40097-015-0178-6 (2016).
Shahzadi, S., Fatima, S., ul ain, Q., Shafiq, Z. & Janjua, M. R. S. A. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Adv. 15, 3858–3903. https://doi.org/10.1039/D4RA07519F (2025).
Paul, T. K. et al. Mapping the progress in surface plasmon resonance analysis of phytogenic silver nanoparticles with colorimetric sensing applications. Chem. Biodivers. 20, e202300510. https://doi.org/10.1002/cbdv.202300510 (2023).
Rawani, A., Ghosh, A. & Chandra, G. Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop. 128, 613–622. https://doi.org/10.1016/j.actatropica.2013.09.007 (2013).
Parveen, S. et al. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb. Pathog. 115, 287–292. https://doi.org/10.1016/j.micpath.2017.12.068 (2018).
Osonga, F. J. et al. Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: a model study as potential fungicides. Molecules 25, 2682. https://doi.org/10.3390/molecules25112682 (2020).
Chen, Y. S., Hung, Y. C., Liau, I. & Huang, G. S. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 4, 858. https://doi.org/10.1007/s11671-009-9334-6 (2009).
Xia, Z. K. et al. The antifungal effect of silver nanoparticles on Trichosporon asahii. J. Microbiol. Immunol. Infect. 49, 182–188. https://doi.org/10.1016/j.jmii.2014.04.013 (2016).
Wasilewska, A. et al. Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. Food Chem. 400, 133960. https://doi.org/10.1016/j.foodchem.2022.133960 (2023).
Garcia-Marin, L. E., Juarez-Moreno, K., Vilchis-Nestor, A. R. & Castro-Longoria, E. Highly antifungal activity of biosynthesized copper oxide nanoparticles against Candida albicans. Nanomaterials 12, 3856. https://doi.org/10.3390/nano12213856 (2022).
Abegunde, S. M., Afolayan, B. O. & Ilesanmi, T. M. Ensuring sustainable plant-assisted nanoparticles synthesis through process standardization and reproducibility: challenges and future directions – a review. Sustain. Chem. One World. 3, 100014. https://doi.org/10.1016/j.scowo.2024.100014 (2024).
Nguyen, N. T. T. et al. Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review. Environ. Chem. Lett. 20, 2531–2571. https://doi.org/10.1007/s10311-022-01425-w (2022).
Salem, M. Z. M. et al. Plants-derived bioactives: novel utilization as antimicrobial, antioxidant and phytoreducing agents for the biosynthesis of metallic nanoparticles. Microb. Pathog. 158, 105107. https://doi.org/10.1016/j.micpath.2021.105107 (2021).
Jinu, U. et al. Biofabrication of cubic phase silver nanoparticles loaded with phytochemicals from Solanum nigrum leaf extracts for potential Antibacterial, antibiofilm and antioxidant activities against MDR human pathogens. J. Clust Sci. 28, 489–505. https://doi.org/10.1007/s10876-016-1125-5 (2017).
Esther Arland, S. & Kumar, J. Green and chemical syntheses of silver nanoparticles: comparative and comprehensive study on characterization, therapeutic potential, and cytotoxicity. Eur. J. Med. Chem. Rep. 11, 100168. https://doi.org/10.1016/j.ejmcr.2024.100168 (2024).
Gole, A. et al. Pepsin – Gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17, 1674–1679. https://doi.org/10.1021/la001164w (2001).
Prasad, K. S. et al. Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afr. J. Biotechnol. 10, 8122. https://doi.org/10.5897/AJB11.394 (2011).
Shumi, G. et al. Biosynthesis of silver nanoparticles functionalized with histidine and phenylalanine amino acids for potential antioxidant and antibacterial activities. ACS Omega. 8, 24371–24386. https://doi.org/10.1021/acsomega.3c01910 (2023).
Sharma, N. K. et al. Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega. 7, 27004–27020. https://doi.org/10.1021/acsomega.2c01400 (2022).
Shankar, S. & Rhim, J. W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr. Polym. 130, 353–363. https://doi.org/10.1016/j.carbpol.2015.05.018 (2015).
Shafey, A. M. E. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green. Process. Synth. 9, 304–339. https://doi.org/10.1515/gps-2020-0031 (2020).
Oza, G. et al. Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. J. Mater. Sci. 55, 1309–1330. https://doi.org/10.1007/s10853-019-04121-3 (2020).
Yadav, S., Nadar, T., Lakkakula, J. & Wagh, N. S. In Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities (eds. Maulin P. S et al.) 147–188 (Springer International Publishing, 2024).
Villagrán, Z. et al. Plant-based extracts as reducing, capping, and stabilizing agents for the green synthesis of inorganic nanoparticles. Resour 13, 70. https://doi.org/10.3390/resources13060070 (2024).
Mani, M. et al. Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity. Environ. Res. 202, 111627. https://doi.org/10.1016/j.envres.2021.111627 (2021).
Alam, M. N., Roy, S., Anisuzzaman, S. M. & Rafiquzzaman, M. Antioxidant activity of the ethanolic extracts of leaves, stems and fruits of Solanum nigrum. Pharmacogn Commun. 2, 67–71 (2012).
Shenbagam, M. & Sulthana, R. A review: Solanum nigrum and its Pharmacological activities. Int. J. Res. App Sci. Eng. Tech. 10, 916–923 (2022).
Ravi, V., Saleem, T., Maiti, P., Gauthaman, K. & Ramamurthy, J. Phytochemical and Pharmacological evaluation of Solanum nigrum Linn. Afr. J. Pharm. Pharmacol. 3, 454–457 (2009).
Mukhopadhyay, G. et al. Ethno-pharmacological activity of Solanum nigrum. J. Pharm. Innov. 7, 692–698 (2018).
Huang, H. C., Syu, K. Y. & Lin, J. K. Chemical composition of Solanum nigrum Linn extract and induction of autophagy by leaf water extract and its major flavonoids in AU565 breast cancer cells. J. Agric. Food Chem. 58, 8699–8708. https://doi.org/10.1021/jf101003v (2010).
Arulmozhi, V., Krishnaveni, M., Karthishwaran, K., Dhamodharan, G. & Mirunalini, S. Antioxidant and antihyperlipidemic effect of Solanum nigrum fruit extract on the experimental model against chronic ethanol toxicity. Pharmacogn Mag. 6, 42–50. https://doi.org/10.4103/0973-1296.59965 (2010).
Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. & De, B. Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int. J. Pharm. Sci. Rev. Res. 3, 91–100 (2010).
Prakash, S. & Jain, A. K. Antifungal activity and preliminary phytochemical studies of leaf extract of Solanum nigrum Linn. Int. J. Pharm. Pharm. Sci. 3, 352–355 (2011).
Ikeda, T., Tsumagari, H. & Nohara, T. Steroidal oligoglycosides from Solanum nigrum. Chem. Pharm. Bull. 48, 1062–1064. https://doi.org/10.1248/cpb.48.1062 (2000).
Katsura, H., Tsukiyama, R. I., Suzuki, A. & Kobayashi, M. In vitro antimicrobial activities of Bakuchiol against oral microorganisms. Antimicrob. Agents Chemother. 45, 3009–3013. https://doi.org/10.1128/aac.45.11.3009-3013.2001 (2001).
da Rocha, C. et al. Evaluation of the antifungal effect of chlorogenic acid against strains of Candida spp. Resistant to fluconazole: apoptosis induction and in Silico analysis of the possible mechanisms of action. J. Med. Microbiol. 2022, 71. https://doi.org/10.1099/jmm.0.001526 (2022).
Liu, D., Meng, S., Xiang, Z., He, N. & Yang, G. Antimicrobial mechanism of reaction products of Morus notabilis (mulberry) polyphenol oxidases and chlorogenic acid. Phytochem 163, 1–10. https://doi.org/10.1016/j.phytochem.2019.03.026 (2019).
Liberato, I. et al. Gallic acid leads to cell death of Candida albicans by the apoptosis mechanism. Future Microbiol. 17, 599–606. https://doi.org/10.2217/fmb-2021-0139 (2022).
Akhtar, N. et al. Potent antifungal properties of Gallic acid in Sarcochlamys pulcherrima against Candida auris. BioTechnology 104, 105–119. https://doi.org/10.5114/bta.2023.127202 (2023).
Srinivasulu, C., Ramgopal, M., Ramanjaneyulu, G., Anuradha, C. M. & Suresh Kumar, C. Syringic acid (SA) – a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed. Pharmacother. 108, 547–557. https://doi.org/10.1016/j.biopha.2018.09.069 (2018).
Mendoza, L. et al. Improvement of the antifungal activity against Botrytis cinerea of syringic acid, a phenolic acid from grape pomace. J. Chil. Chem. Soc. 61, 3039–3042. https://doi.org/10.4067/S0717-97072016000300006 (2016).
Hashem, A. H. et al. Antifungal activity of biosynthesized silver nanoparticles (AgNPs) against aspergilli causing aspergillosis: ultrastructure study. J. Funct. Biomater. 13, 242. https://doi.org/10.3390/jfb13040242 (2022).
Khan, T., Yasmin, A. & Townley, H. E. An evaluation of the activity of biologically synthesized silver nanoparticles against bacteria, fungi and mammalian cell lines. Colloids Surf. B Biointerfaces. 194, 111156. https://doi.org/10.1016/j.colsurfb.2020.111156 (2020).
Khalil, N. M., El-Ghany, A. & Rodríguez-Couto, S. M. N. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere 218, 477–486. https://doi.org/10.1016/j.chemosphere.2018.11.129 (2019).
Asghar, M. A., Zahir, E., Asghar, M. A., Iqbal, J. & Rehman, A. A. Facile, one-pot biosynthesis and characterization of iron, copper and silver nanoparticles using Syzygium cumini leaf extract: as an effective antimicrobial and aflatoxin B1 adsorption agents. PLOS ONE. 15, e0234964. https://doi.org/10.1371/journal.pone.0234964 (2020).
Jebril, S., Ben Jenana, K., Dridi, C. & R. & Green synthesis of silver nanoparticles using Melia Azedarach leaf extract and their antifungal activities: in vitro and in vivo. Mater. Chem. Phys. 248, 122898. https://doi.org/10.1016/j.matchemphys.2020.122898 (2020).
Al-khattaf, F. S. Gold and silver nanoparticles: green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi J. Biol. Sci. 28, 3624–3631. https://doi.org/10.1016/j.sjbs.2021.03.078 (2021).
Matras, E., Gorczyca, A., Przemieniecki, S. W. & Oćwieja, M. Surface properties-dependent antifungal activity of silver nanoparticles. Sci. Rep. 12, 18046. https://doi.org/10.1038/s41598-022-22659-2 (2022).
Akter, M. et al. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J. Adv. Res. 9, 1–16. https://doi.org/10.1016/j.jare.2017.10.008 (2018).
Kumari, M. et al. An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pestic Biochem. Physiol. 157, 45–52. https://doi.org/10.1016/j.pestbp.2019.03.005 (2019).
Shi, H. et al. Antifungal activity and mechanisms of AgNPs and their combination with azoxystrobin against Magnaporthe oryzae. Environ. Sci. Nano. 10, 2412–2426. https://doi.org/10.1039/D3EN00168G (2023).
Jo, Y. K., Kim, B. H. & Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant. Dis. 93, 1037–1043. https://doi.org/10.1094/PDIS-93-10-1037 (2009).
Li, L. et al. The antifungal activity and mechanism of silver nanoparticles against four pathogens causing Kiwifruit post-harvest rot. Front. microbiol. 13, 988633. https://doi.org/10.3389/fmicb.2022.988633 (2022).
Gutiérrez, J. A. et al. High antifungal activity against Candida species of monometallic and bimetallic nanoparticles synthesized in nanoreactors. ACS Biomater. Sci. Eng. 4, 647–653. https://doi.org/10.1021/acsbiomaterials.7b00511 (2018).
Nasrollahzadeh, M. & Mohammad Sajadi, S. Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: catalytic properties of the resulting particles. J. Colloid Interface Sci. 462, 243–251. https://doi.org/10.1016/j.jcis.2015.09.065 (2016).
Rasmiya Begum, S. L. & Jayawardana, N. U. Green synthesized metal nanoparticles as an ecofriendly measure for plant growth stimulation and disease resistance. Plant. Nano Biol. 3, 100028. https://doi.org/10.1016/j.plana.2023.100028 (2023).
El-Hefny, M., Mohamed, A. A., Abdelkhalek, A. & Salem, M. Z. M. Productivity and phytochemicals of Asclepias Curassavica in response to compost and silver nanoparticles application: HPLC analysis and antibacterial activity of extracts. Plants 12, 2274. https://doi.org/10.3390/plants12122274 (2023).