• Lally, J. & MacCabe, J. H. Antipsychotic medication in schizophrenia: a review. Br. Med. Bull. 114, 169–179 (2015).

    PubMed 

    Google Scholar
     

  • Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. Lancet. 388, 86–97 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Owen, M. J., Legge, S. E., Rees, E., Walters, J. T. R. & O’Donovan, M. C. Genomic findings in schizophrenia and their implications. Mol. Psychiatry 28, 3638–3647 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes. Nature 614, 492–499 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rees, E. et al. Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA Psychiatry 73, 963–969 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).

    PubMed 

    Google Scholar
     

  • Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat. Neurosci. 19, 1433–1441 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, T. et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat. Genet. 49, 1167–1173 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rees, E. et al. De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nat. Neurosci. 23, 179–184 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. et al. Schizophrenia risk conferred by rare protein-truncating variants is conserved across diverse human populations. Nat. Genet. 55, 369–376 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 54, 1320–1331 (2022.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. Nat. Neurosci. 27, 1864–1879 (2024).

    PubMed Central 

    Google Scholar
     

  • Palmer, D. S. et al. Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat. Genet. 54, 541–547 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooker, A. S. & Berkowitz, K. M. The roles of cohesins in mitosis, meiosis, and human health and disease. Methods Mol. Biol. Clifton NJ. 1170, 229–266 (2014).


    Google Scholar
     

  • Bose, T. & Gerton, J. L. Cohesinopathies, gene expression, and chromatin organization. J. Cell Biol. 189, 201–210 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagasaka, K. et al. Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms. Mol. Cell 83, 3049–3063.e6 (2023).

    PubMed 

    Google Scholar
     

  • Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    PubMed 

    Google Scholar
     

  • Casa, V. et al. Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control. Genome Res. 30, 515–527 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss, F. D. et al. Neuronal genes deregulated in Cornelia de Lange Syndrome respond to removal and re-expression of cohesin. Nat. Commun. 12, 2919 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calderon, L. et al. Cohesin-dependence of neuronal gene expression relates to chromatin loop length. eLife 11, e76539 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howrigan, D. P. et al. Exome sequencing in schizophrenia-affected parent-offspring trios reveals risk conferred by protein-coding de novo mutations. Nat. Neurosci. 23, 185–193 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halvorsen, M. et al. Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia. Nat. Commun. 11, 1842 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vissing, H., Meyer, W. K.-H., Aagaard, L., Tommerup, N. & Thiesen, H.-J. Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett. 369, 153–157 (1995).

    PubMed 

    Google Scholar
     

  • Urrutia, R. KRAB-containing zinc-finger repressor proteins. Genome Biol. 4, 231 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Peripheral Blood Leukocyte RNA-Seq Identifies a Set of Genes Related to Abnormal Psychomotor Behavior Characteristics in Patients with Schizophrenia. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 26, e922426 (2020).


    Google Scholar
     

  • Kathuria, A., Lopez-Lengowski, K., Watmuff, B. & Karmacharya, R. Morphological and transcriptomic analyses of stem cell-derived cortical neurons reveal mechanisms underlying synaptic dysfunction in schizophrenia. Genome Med. 15, 58 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. SETD1A mediated H3K4 methylation and its role in neurodevelopmental and neuropsychiatric disorders. Front. Mol. Neurosci. 14, 772000 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, D. B. et al. Haploinsufficiency underlies the neurodevelopmental consequences of SLC6A1 variants. Am. J. Hum. Genet. 111, 1222–1238 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien, H. E. et al. Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biol. 19, 194 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall, L. S. et al. Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders. Mol. Psychiatry 26, 2082–2088 (2021).

    PubMed 

    Google Scholar
     

  • Killian, R. L., Flippin, J. D., Herrera, C. M., Almenar-Queralt, A. & Goldstein, L. S. B. Kinesin light chain 1 suppression impairs human embryonic stem cell neural differentiation and amyloid precursor protein metabolism. PLoS One. 7, e29755 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rees, E. et al. Analysis of copy number variations at 15 schizophrenia-associated loci. Br. J. Psychiatry 204, 108–114 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rees, E. et al. Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nat. Commun. 12, 5353 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehalle, D. et al. STAG1 mutations cause a novel cohesinopathy characterised by unspecific syndromic intellectual disability. J. Med. Genet. 54, 479–488 (2017).

    PubMed 

    Google Scholar
     

  • Yuan, B. et al. Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies. Genet. Med. 21, 663–675 (2019).

    PubMed 

    Google Scholar
     

  • Di Muro, E. et al. Novel STAG1 frameshift mutation in a patient affected by a syndromic form of neurodevelopmental disorder. Genes. 12, 1116 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, M. Y. et al. Loss of PCLO function underlies pontocerebellar hypoplasia type III. Neurology 84, 1745–1750 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, D. & Suzuki, N. Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain 132, 8–15 (2009).

    PubMed 

    Google Scholar
     

  • Singh, T. et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat. Neurosci. 19, 571–577 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diagnostic and Statistical Manual of Mental Disorders. 4th ed., American Psychiatric Association (1994). https://psycnet.apa.org/record/1994-97698-000

  • World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. https://apps.who.int/iris/handle/10665/37958 (1992).

  • Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  • Lynham, A. J. et al. DRAGON-Data: a platform and protocol for integrating genomic and phenotypic data across large psychiatric cohorts. BJPsych. Open. 9, e32 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 49, 1373–1384 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma. Oxf. Engl. 25, 1754–1760 (2009).


    Google Scholar
     

  • Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chick, S. L. Analysis of exome sequencing data implicates rare coding variants in STAG1 and ZNF136 in schizophrenia. https://doi.org/10.5281/zenodo.14865530 (2025).

  • Boughton, A. P. et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics 37, 3017–3018 (2021).

    PubMed 
    PubMed Central 

    Google Scholar