• Zhang, X., Chi, Z., Zhang, Y., Liu, S. & Xu, J. Recent advances in mechanochromic luminescent metal complexes. J. Mater. Chem. C 1, 3376–3390 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Z. Q. et al. A dual-stimuli-responsive coordination network featuring reversible wide-range luminescence-tuning behavior. Angew. Chem. Int. Ed. Engl. 58, 5614–5618 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Y. et al. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites. J. Am. Chem. Soc. 141, 6504–6508 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Ye, K.-Q. & Zhang, H.-Y. Organic materials with hydrostatic pressure induced mechanochromic properties. Chin. Chem. Lett. 27, 1367–1375 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Z. et al. A mechanochromic single crystal: turning two color changes into a tricolored switch. Angew. Chem. Int. Ed. Engl. 55, 519–522 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 134, 14706–14709 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, L., Yang, B. & Ma, Y. Progress in next-generation organic electroluminescent materials: Material design beyond exciton statistics. Sci. China Chem. 57, 335–345 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xue, J. et al. Highly efficient thermally activated delayed fluorescence via J-aggregates with strong intermolecular charge transfer. Adv. Mater. 31, 1808242 (2019).

    Article 

    Google Scholar
     

  • Zobel, J. P., Wernbacher, A. M. & Gonzalez, L. Efficient reverse intersystem crossing in carbene-copper-amide TADF emitters via an intermediate triplet state. Angew. Chem. Int. Ed. Engl. 62, e202217620 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phan Huu, D. K. A. et al. Thermally activated delayed fluorescence: polarity, rigidity, and disorder in condensed phases. J. Am. Chem. Soc. 144, 15211–15222 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Z. et al. White-light emission strategy of a single organic compound with aggregation-induced emission and delayed fluorescence properties. Angew. Chem. Int. Ed. Engl. 54, 7181–7184 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsujimoto, H. et al. Thermally activated delayed fluorescence and aggregation induced emission with through-space charge transfer. J. Am. Chem. Soc. 139, 4894–4900 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Okazaki, M. et al. Thermally activated delayed fluorescent phenothiazine-dibenzo[a,j]phenazine-phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chem. Sci. 8, 2677–2686 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pashazadeh, R. et al. Multicolor luminescence switching and controllable thermally activated delayed fluorescence turn on/turn off in carbazole–quinoxaline–carbazole triads. J. Phys. Chem. Lett. 9, 1172–1177 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, C. et al. Thermally activated delayed fluorescence with dual-emission and pressure-induced bidirectional shifting: cooperative effects of intramolecular and intermolecular energy transfer. Chem. Sci. 14, 1089–1096 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishimatsu, R. et al. Electrogenerated chemiluminescence of donor-acceptor molecules with thermally activated delayed fluorescence. Angew. Chem. Int. Ed. Engl. 53, 6993–6996 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Etherington, M. K. et al. Persistent dimer emission in thermally activated delayed fluorescence materials. J. Phys. Chem. C 123, 11109–11117 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Luminogens based on cyano-substituted anthracene isomers: Different molecular packing and distinct piezochromic properties. Adv. Opt. Mater. 9, 2100813 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nagura, K. et al. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J. Am. Chem. Soc. 135, 10322–10325 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv, Y., Liu, Y., Ye, X., Liu, G. & Tao, X. The effect of mechano-stimuli on the amorphous-to-crystalline transition of mechanochromic luminescent materials. CrystEngComm 17, 526–531 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Investigations on average fluorescence lifetimes for visualizing multi-exponential decays. Front. Phys. 8, 576862 (2020).

    Article 

    Google Scholar
     

  • Engelborghs, A. S. Y. The correct use of “average” fluorescence parameters. Photochem. Photobiol. 67, 475–486 (1998).

    Article 

    Google Scholar
     

  • Thor, W., Bünzli, J. C. G., Wong, K. L. & Tanner, P. A. Shedding light on luminescence lifetime measurement and associated data treatment. Adv. Photonics Res. 6, 2400081 (2024).

    Article 

    Google Scholar
     

  • Eng, J. & Penfold, T. J. Open questions on the photophysics of thermally activated delayed fluorescence. Commun. Chem. 4, 91 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noda, H., Nakanotani, H. & Adachi, C. Excited state engineering for efficient reverse intersystem crossing. Sci. Adv. 4, eaao6910 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J., Feng, R.-R., Zhou, L., Gai, F. & Zhang, W. Photoenhancement of the C≡N stretching vibration intensity of aromatic nitriles. J. Phys. Chem. Lett. 13, 9745–9751 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Y. et al. Pressure-induced emission enhancement of carbazole: The restriction of intramolecular vibration. J. Phys. Chem. Lett. 8, 4191–4196 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Pressure-engineered through-space conjugation for precise control of clusteroluminescence. Angew. Chem. Int. Ed. Engl. 64, e202420502 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar