• Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).


    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).


    Google Scholar
     

  • Krempaský, J. et al. Altermagnetic lifting of Kramer’s spin degeneracy. Nature 626, 517–522 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 15, 2116 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, J. et al. Large band splitting in g-wave altermagnet CrSb. Phys. Rev. Lett. 133, 206401 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zeng, M. et al. Observation of spin splitting in room-temperature metallic antiferromagnet CrSb. Adv. Sci. 11, 2406529 (2024).

    Article 

    Google Scholar
     

  • Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Article 

    Google Scholar
     

  • Reichlova, H. et al. Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate. Nat. Commun. 15, 4961 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hariki, A. et al. X-Ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett. 132, 176701 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hariki, A., Okauchi, T., Takahashi, Y. & Kuneš, J. Determination of the Néel vector in rutile altermagnets through X-ray magnetic circular dichroism: the case of MnF2. Phys. Rev. B 110, L100402 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Okamoto, J. et al. Giant X-ray circular dichroism in a time-reversal invariant antiferromagnet. Adv. Mater. 36, 2309172 (2024).

    Article 

    Google Scholar
     

  • Osumi, T. et al. Observation of a giant band splitting in altermagnetic MnTe. Phys. Rev. B 109, 115102 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Z., Ozeki, M., Asai, S., Itoh, S. & Masuda, T. Chiral split magnon in altermagnetic MnTe. Phys. Rev. Lett. 133, 156702 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhou, Z. et al. Manipulation of the altermagnetic order in CrSb via crystal symmetry. Nature 638, 645–650 (2025).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rezende, S. M., Azevedo, A. & Rodríguez-Suárez, R. L. Introduction to antiferromagnetic magnons. J. Appl. Phys. 126, 151101 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kravchuk, V. P. et al. Chiral magnetic excitations and domain textures of g-wave altermagnets. Phys. Rev. B. https://doi.org/10.1103/zn8d-ft9b (2025).

  • Garcia-Gaitan, F., Kefayati, A., Xiao, J. Q. & Nikolić, B. K. Magnon spectrum of altermagnets beyond linear spin wave theory: magnon-magnon interactions via time-dependent matrix product states versus atomistic spin dynamics. Phys. Rev. B 111, L020407 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Eto, R. et al. Spontaneous magnon decays from nonrelativistic time-reversal symmetry breaking in altermagnets. Phys. Rev. B. 112, 094442 (2025).

  • Cichutek, N., Kopietz, P. & Rückriegel, A. Spontaneous magnon decay in two-dimensional altermagnets. Phys. Rev. Res. 7, 033208 (2025).

    Article 

    Google Scholar
     

  • Costa, A. T., Henriques, J. C. G. & Fernández-Rossier, J. Giant spatial anisotropy of magnon Landau damping in altermagnets. SciPost Phys. 18, 125 (2025).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhang, Y.-F., Ni, X.-S., Chen, K. & Cao, K. Chiral magnon splitting in altermagnetic CrSb from first principles. Phys. Rev. B 111, 174451 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Beida, W. et al. Chiral split magnons in metallic g-wave altermagnets: Insights from many-body perturbation theory, Preprint at https://doi.org/10.48550/arXiv.2505.08103 (2025).

  • Barman, A. et al. The 2021 magnonics roadmap. J. Phys. Condens. Matter 33, 413001 (2021).

    Article 

    Google Scholar
     

  • Gohlke, M., Corticelli, A., Moessner, R., McClarty, P. A. & Mook, A. Spurious symmetry enhancement in linear spin wave theory and interaction-induced topology in magnons. Phys. Rev. Lett. 131, 186702 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Šmejkal, L. et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 131, 256703 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Alaei, M. et al. Origin of A-type antiferromagnetism and chiral split magnons in altermagnetic α-MnTe. Phys. Rev. B 111, 104416 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Sandratskii, L. M., Carva, K. & Silkin, V. M. Direct ab initio calculation of magnons in altermagnets: Method, spin-space symmetry aspects, and application to MnTe. Phys. Rev. B 111, 184436 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Amin, O. J. et al. Nanoscale imaging and control of altermagnetism in MnTe. Nature 636, 348–353 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Groot, F. M. F. et al. Resonant inelastic X-ray scattering. Nat. Rev. Methods Prim. 4, 45 (2024).

    Article 

    Google Scholar
     

  • Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946–950 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, X. et al. Spin-excitation anisotropy in the nematic state of detwinned FeSe. Nat. Phys. 18, 806–812 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. et al. Single- and multimagnon dynamics in antiferromagnetic α-Fe2O3 thin films. Phys. Rev. X 13, 011012 (2023).


    Google Scholar
     

  • Elnaggar, H. et al. Magnetic excitations beyond the single- and double-magnons. Nat. Commun. 14, 2749 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Spin waves and orbital contribution to ferromagnetism in a topological metal. Nat. Commun. 15, 8905 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radhakrishna, P. & Cable, J. W. Inelastic-neutron-scattering studies of spin-wave excitations in the pnictides MnSb and CrSb. Phys. Rev. B 54, 11940–11943 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Snow, A. I. Neutron diffraction investigation of the atomic magnetic moment orientation in the antiferromagnetic compound CrSb. Phys. Rev. 85, 365–365 (1952).

    Article 
    ADS 

    Google Scholar
     

  • Takei, W. J., Cox, D. E. & Shirane, G. Magnetic structures in the MnSb-CrSb system. Phys. Rev. 129, 2008–2018 (1963).

    Article 
    ADS 

    Google Scholar
     

  • Tsubokawa, I. Magnetic anisotropy of chromium antimonide and its manganese substitites. J. Phys. Soc. Jpn. 16, 277–281 (1961).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, K.-J. et al. I21: an advanced high-resolution resonant inelastic X-ray scattering beamline at Diamond Light Source. J. Synchrotron Radiat. 29, 563–580 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayashida, T., Arakawa, K., Oshima, T., Kimura, K. & Kimura, T. Observation of antiferromagnetic domains in Cr2O3 using nonreciprocal optical effects. Phys. Rev. Res. 4, 043063 (2022).

    Article 

    Google Scholar
     

  • Haverkort, M. W. Theory of resonant inelastic X-Ray scattering by collective magnetic excitations. Phys. Rev. Lett. 105, 167404 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bauer, D. S. G., Development of a relativistic full-potential first-principles multiple scattering Green function method applied to complex magnetic textures of nano structures at surfaces, Ph.D. thesis, RWTH Aachen (2014).

  • The JuKKR website is https://jukkr.fz-juelich.de

  • Papanikolaou, N., Zeller, R. & Dederichs, P. H. Conceptual improvements of the KKR method. J. Phys.: Condens. Matter 14, 2799 (2002).

    ADS 

    Google Scholar
     

  • Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Wildberger, K., Lang, P., Zeller, R. & Dederichs, P. H. Fermi-Dirac distribution in ab initio Green’s-function calculations. Phys. Rev. B 52, 11502 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Ebert, H. & Mankovsky, S. Anisotropic exchange coupling in diluted magnetic semiconductors: Ab initio spin-density functional theory. Phys. Rev. B 79, 045209 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Nolting, W. and Ramakanth, A., Quantum Theory of Magnetism https://doi.org/10.1007/978-3-540-85416-6 (Springer Berlin Heidelberg, 2009).

  • Wong, Y. H., Scarpace, F. L., Pfeifer, C. D. & Yen, W. M. Circular and magnetic circular dichroism of some simple antiferromagnetic fluorides. Phys. Rev. B 9, 3086–3096 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Morano, V. C. et al. Absence of altermagnetic magnon band splitting in MnF2. Phys. Rev. Lett. 134, 226702 (2025).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jost, D. et al. Chiral altermagnon in MnTe. Preprint at https://doi.org/10.48550/arXiv.2501.17380 (2025).

  • Takegami, D. et al. Circular dichroism in resonant inelastic X-ray scattering: probing altermagnetic domains in MnTe. Phys. Rev. Lett. https://doi.org/10.1103/512v-n5f9 (2025).

  • Takei, W. J., Cox, D. E. & Shirane, G. Magnetic structures in CrTe—CrSb solid solutions. J. Appl. Phys. 37, 973–974 (1966).

    Article 
    ADS 

    Google Scholar
     

  • Nag, A. et al. Circular dichroism in resonant inelastic X-ray scattering from birefringence in CuO. Phys. Rev. Res. 7, L022047 (2025).

    Article 

    Google Scholar
     

  • Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349–354 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, C. et al. Altermagnets as a new class of functional materials. Nat. Rev. Mater. 10, 473–485 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Rüssmann, P. et al. JuDFTteam/JuKKR: v3.6, Zenodo https://doi.org/10.5281/zenodo.7284739 (2022).

  • dos Santos, F. J., dos Santos Dias, M., Guimarães, F. S. M., Bouaziz, J. & Lounis, S. Spin-resolved inelastic electron scattering by spin waves in noncollinear magnets. Phys. Rev. B 97, 024431 (2018).

    Article 
    ADS 

    Google Scholar
     

  • CCP9 is the Collaborative Computational Project for the Study of the Electronic Structure of Condensed Matter. See https://ccp9.ac.uk/.

  • Biniskos, N. et al. Reproducibility package for article: Systematic mapping of altermagnetic magnons by resonant inelastic X-ray circular dichroism. Repository at https://doi.org/10.6084/m9.figshare.30081514.v1 (2025).