• Kadohisa, M. Effects of odor on emotion, with implications. Front. Syst. Neurosci. 7, 57047 (2013).

  • Zucco, G. M., Aiello, L., Turuani, L. & Köster, E. Odor-evoked autobiographical memories: age and gender differences along the life span. Chem. Senses 37, 179–189 (2012).

    PubMed 

    Google Scholar
     

  • Robin, O., Alaoui-Ismaïli, O., Dittmar, A. & Vernet-Maury, E. Emotional responses evoked by dental odors: an evaluation from autonomic parameters. J. Dent. Res. 77, 1638–1646 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Sullivan, R. M., Landers, M., Yeaman, B. & Wilson, D. A. Good memories of bad events in infancy. Nature 407, 38–39 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hummel, T. & Nordin, S. Olfactory disorders and their consequences for quality of life. Acta Otolaryngol. 125, 116–121 (2005).

    PubMed 

    Google Scholar
     

  • Whitcroft, K. L. et al. Position paper on olfactory dysfunction: 2023. Rhinology 61, 1–108 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Peters, J. M. et al. Olfactory function in mild cognitive impairment and Alzheimer’s disease: an investigation using psychophysical and electrophysiological techniques. Am. J. Psychiatry 160, 1995–2002 (2003).

    PubMed 

    Google Scholar
     

  • Haugen, J. et al. Prevalence of impaired odor identification in Parkinson disease with imaging evidence of nigrostriatal denervation. J. Neural Transm. 123, 421–424 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Ross, G. W. et al. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann. Neurol. 63, 167–173 (2008).

    PubMed 

    Google Scholar
     

  • Oppo, V., Melis, M., Melis, M., Tomassini Barbarossa, I. & Cossu, G. “Smelling and tasting” Parkinson’s disease: using senses to improve the knowledge of the disease. Front. Aging Neurosci. 12, 43 (2020).

  • Murphy, C. Olfactory and other sensory impairments in Alzheimer disease. Nat. Rev. Neurol. 15, 11–24 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Rahayel, S., Frasnelli, J. & Joubert, S. The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: A meta-analysis. Behav. Brain Res. 231, 60–74 (2012).

    PubMed 

    Google Scholar
     

  • Sorokowski, P. et al. Sex differences in human olfaction: a meta-analysis. Front. Psychol. 10, 426219 (2019).

  • Stogbauer, J. et al. Prevalence and risk factors of smell dysfunction – a comparison between five German population-based studies. Rhinol. J. 0, 0–0 (2019).


    Google Scholar
     

  • Doty, R. L. & Cameron, E. L. Sex differences and reproductive hormone influences on human odor perception. Physiol. Behav. 97, 213–228 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovacs, T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res. Rev. 3, 215–232 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • Hayakawa, A. et al. Skeletal and gene-regulatory functions of nuclear sex steroid hormone receptors. J. Bone Miner. Metab. 40, 361–374 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Vrtačnik, P., Ostanek, B., Mencej-Bedrač, S. & Marc, J. The many faces of estrogen signaling. Biochem. Med. 24, 329–342 (2014).


    Google Scholar
     

  • Owen, G. I. & Zelent, A. Origins and evolutionary diversification of the nuclear receptor superfamily. Cell. Mol. Life Sci. 57, 809–827 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller, A. & Vosshall, L. B. Better smelling through genetics: mammalian odor perception. Curr. Opin. Neurobiol. 18, 364–369 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manzini, I., Frasnelli, J. & Croy, I. Wie wir riechen und was es für uns bedeutet. HNO 62, 846–852 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Jaeger, S. R., McRae, J. F., Salzman, Y., Williams, L. & Newcomb, R. D. A preliminary investigation into a genetic basis for cis-3-hexen-1-ol odour perception: a genome-wide association approach. Food Qual. Prefer. 21, 121–131 (2010).


    Google Scholar
     

  • McRae, J. F. et al. Identification of regions associated with variation in sensitivity to food-related odors in the human genome. Curr. Biol. 23, 1596–1600 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Gisladottir, R. S. et al. Sequence variants in TAAR5 and other loci affect human odor perception and naming. Curr. Biol. 30, 4643–4653.e3 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Dong, J. et al. Genome-wide association analysis of the sense of smell in U.S. older adults: identification of novel risk loci in African Americans and European Americans. Mol. Neurobiol. 54, 8021–8032 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Kobal, G. et al. Sniffin’ Sticks’: screening of olfactory performance. Rhinology 34, 222–226 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLOS Genet. 6, e1000993 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díaz-Guerra, E., Pignatelli, J., Nieto-Estévez, V. & Vicario-Abejón, C. transcriptional regulation of olfactory bulb neurogenesis. Anat. Rec. 296, 1364–1382 (2013).


    Google Scholar
     

  • Devasani, K. & Yao, Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers 19, 23 (2022).

    CAS 

    Google Scholar
     

  • Mena, E. L. et al. Dimerization quality control ensures neuronal development and survival. Science 362, eaap8236 (2018).

    PubMed 

    Google Scholar
     

  • Fukutani, Y., Koshizawa, T. & Yohda, M. Application of vapor phase stimulation method for screening of human odorant receptors responding to cinnamaldehyde. Sens. Mater. 33, 4203 (2021).

    CAS 

    Google Scholar
     

  • Weidinger, D. et al. Olfactory receptors impact pathophysiological processes of lung diseases in bronchial epithelial cells. Eur. J. Cell Biol. 103, 151408 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Esparcia, P. et al. Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: novel putative chemoreceptors in the human brain. J. Neuropathol. Exp. Neurol. 72, 524–539 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Cole, J. B., Florez, J. C. & Hirschhorn, J. N. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nat. Commun. 11, 1467 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saunders, G. R. B. et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 612, 720–724 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menashe, I. et al. Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol. 5, e284 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pino, J. A. Odour-active compounds in pineapple (Ananas comosus [L.] Merril cv. Red Spanish). Int. J. Food Sci. Technol. 48, 564–570 (2013).

    CAS 

    Google Scholar
     

  • Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gudmundsson, J. et al. Genome-wide associations for benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA. Nat. Commun. 9, 4568 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akilen, R., Pimlott, Z., Tsiami, A. & Robinson, N. Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes. Nutrition 29, 1192–1196 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Jaeger, S. R. et al. A Mendelian trait for olfactory sensitivity affects odor experience and food selection. Curr. Biol. 23, 1601–1605 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. et al. From musk to body odor: decoding olfaction through genetic variation. PLOS Genet. 18, e1009564 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshikawa, K., Deguchi, J., Hu, J., Lu, H.-Y. & Matsunami, H. An odorant receptor that senses four classes of musk compounds. Curr. Biol. 32, 5172–5179.e5 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sato-Akuhara, N. et al. Genetic variation in the human olfactory receptor OR5AN1 associates with the perception of musks. Chem. Senses 48, bjac037 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Comparative phosphoproteomic profiling of type III adenylyl cyclase knockout and control, male, and female mice. Front. Cell. Neurosci. 13, 34 (2019).

  • Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26, 252–258 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, K. & Shepherd, G. M. Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb. Semin. Cell Biol. 5, 65–74 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Bushdid, C., Magnasco, M. O., Vosshall, L. B. & Keller, A. Humans can discriminate more than 1 trillion olfactory stimuli. Science 343, 1370–1372 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E. & Kobal, G. ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 22, 39–52 (1997).

  • Kim, H. & Greer, C. A. The emergence of compartmental organization in olfactory bulb glomeruli during postnatal development. J. Comp. Neurol. 422, 297–311 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Hedner, M., Larsson, M., Arnold, N., Zucco, G. M. & Hummel, T. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J. Clin. Exp. Neuropsychol. 32, 1062–1067 (2010).

    PubMed 

    Google Scholar
     

  • Yahiaoui-Doktor, M. et al. Olfactory function is associated with cognitive performance: results from the population-based LIFE-adult-study. Alzheimers Res. Ther. 11, 43 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Royet, J.-P., Koenig, O., Paugam-Moisy, H., Puzenat, D. & Chasse, J.-L. Levels-of-processing effects on a task of olfactory naming. Percept. Mot. Skills 98, 197–213 (2004).

    PubMed 

    Google Scholar
     

  • Wilson, S., Qi, J. & Filipp, F. V. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Sci. Rep. 6, 32611 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, R. A., Costiloe, J. P., Howard, R. P. & Wolf, S. Olfactory perception thresholds in hypogonadal women: changes accompanying administration of androgen and estrogen. J. Clin. Endocrinol. Metab. 18, 379–390 (1958).

    CAS 
    PubMed 

    Google Scholar
     

  • Good, P. R., Geary, N. & Engen, T. The effect of estrogen on odor detection. Chem. Senses 2, 45–50 (1976).


    Google Scholar
     

  • Kass, M. D., Czarnecki, L. A., Moberly, A. H. & McGann, J. P. Differences in peripheral sensory input to the olfactory bulb between male and female mice. Sci. Rep. 7, 45851 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y.-C. et al. TOMM40 genetic variants cause neuroinflammation in Alzheimer’s disease. Int. J. Mol. Sci. 24, 4085 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovács, T., Cairns, N. J. & Lantos, P. L. Olfactory centres in Alzheimer’s disease: olfactory bulb is involved in early Braak’s stages. NeuroReport 12, 285 (2001).

    PubMed 

    Google Scholar
     

  • Ayabe-Kanamura, S. et al. Differences in perception of everyday odors: a Japanese-German cross-cultural study. Chem. Senses 23, 31–38 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Chrea, C. et al. Culture and odor categorization: agreement between cultures depends upon the odors. Food Qual. Prefer. 15, 669–679 (2004).


    Google Scholar
     

  • Neumann, C. et al. Validation study of the “Sniffin’ Sticks” olfactory test in a British population: a preliminary communication. Clin. Otolaryngol. 37, 23–27 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Hsieh, J. W., Keller, A., Wong, M., Jiang, R.-S. & Vosshall, L. B. SMELL-S and SMELL-R: olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience. Proc. Natl. Acad. Sci. 114, 11275–11284 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pattaro, C. et al. The Cooperative Health Research in South Tyrol (CHRIS) study: rationale, objectives, and preliminary results. J. Transl. Med. 13, 348 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engel, C. et al. Cohort profile: the LIFE-adult-study. Int. J. Epidemiol. 52, e66–e79 (2023).

    PubMed 

    Google Scholar
     

  • Wright, J. D. et al. The atherosclerosis risk in communities (ARIC) study: JACC focus seminar 3/8. J. Am. Coll. Cardiol. 77, 2939–2959 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McVean, G. A. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation. Bioinformatics 31, 782–784 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics 25, 1841–1842 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, J. D. Miamiplot: an R package for creating ggplot2 based miami plots. (2020).

  • Gordon, M. The Forestplot package. https://github.com/gforge/forestplot (2022).

  • Boughton, A. P. et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics 37, 3017–3018 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakefield, J. Bayes factors for genome-wide association studies: comparison with P-values. Genet. Epidemiol. 33, 79–86 (2009).

    PubMed 

    Google Scholar
     

  • Johnson, T. tobyjohnson/gtx. https://github.com/tobyjohnson/gtx (2023).

  • Scholz, M. et al. Genome-wide meta-analysis of phytosterols reveals five novel loci and a detrimental effect on coronary atherosclerosis. Nat. Commun. 13, 143 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2022).

    PubMed Central 

    Google Scholar
     

  • The GTEx Consortium et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

  • Safran, M. et al. The GeneCards Suite. In Practical Guide to Life Science Databases (eds. Abugessaisa, I. & Kasukawa, T.) 27–56 (Springer Nature, Singapore, 2021). https://doi.org/10.1007/978-981-16-5812-9_2.

  • Stelzer, G. et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 54, 1.30.1–1.30.33 (2016).


    Google Scholar
     

  • Winkler, T. W. et al. Approaches to detect genetic effects that differ between two strata in genome-wide meta-analyses: recommendations based on a systematic evaluation. PLoS ONE 12, e0181038 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

    MathSciNet 

    Google Scholar
     

  • Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lloyd-Jones, L. R. et al. The genetic architecture of gene expression in peripheral blood. Am. J. Hum. Genet. 100, 228–237 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, T. et al. Genetic control of RNA splicing and its distinct role in complex trait variation. Nat. Genet. 54, 1355–1363 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatton, A. A. et al. Genetic control of DNA methylation is largely shared across European and East Asian populations. Nat. Commun. 15, 2713 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • hmgu-itg/VCF-liftover. Institute of translational genomics. https://github.com/hmgu-itg/VCF-liftover (2016).

  • Bourdeau, V. et al. Genome-Wide Identification of High-Affinity Estrogen Response Elements in Human and Mouse. Mol. Endocrinol. 18, 1411–1427 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karczewski, K. J. et al. Pan-UK Biobank GWAS improves discovery, analysis of genetic architecture, and resolution into ancestry-enriched effects. Preprint at https://doi.org/10.1101/2024.03.13.24303864 (2024).

  • Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, A. et al. Unravelling the complex causal effects of substance use behaviours on common diseases. Commun. Med. 4, 1–13 (2024).


    Google Scholar
     

  • Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, S., Bowden, J., Fall, T., Ingelsson, E. & Thompson, S. G. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology 28, 30 (2017).

    PubMed 

    Google Scholar
     

  • Rees, J. M. B., Wood, A. M., Dudbridge, F. & Burgess, S. Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates. PLoS ONE 14, e0222362 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 26, 2333–2355 (2017).

    MathSciNet 
    PubMed 

    Google Scholar
     

  • Förster, F. GenStatLeipzig/GWAMA_olfaction: initial release. Zenodo https://doi.org/10.5281/zenodo.15606619 (2025).