• Bertone, G. & Hooper, D. History of dark matter. Rev. Mod. Phys. 90, 045002 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Salucci, P. The distribution of dark matter in galaxies. Astron. Astrophys. Rev. 27, 2 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large scale structure with cold dark matter. Nature 311, 517–525 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peebles, P. J. E. Large scale background temperature and mass fluctuations due to scale invariant primeval perturbations. Astrophys. J. Lett. 263, L1–L5 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Supp. Series 208, 19 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • Gleyzes, J., Langlois, D., Mancarella, M. & Vernizzi, F. Effective theory of interacting dark energy. J. Cosmol. Astropart. Phys. 08, 054 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 555, 71–74 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schewtschenko, J. A. et al. Dark matter–radiation interactions: the structure of Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 461, 2282–2287 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Diacoumis, J. A. D. & Wong, Y. Y. Y. On the prior dependence of cosmological constraints on some dark matter interactions. J. Cosmol. Astropart. Phys. 05, 025 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Diamanti, R., Giusarma, E., Mena, O., Archidiacono, M. & Melchiorri, A. Dark Radiation and interacting scenarios. Phys. Rev. D 87, 063509 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Buen-Abad, M. A., Marques-Tavares, G. & Schmaltz, M. Non-Abelian dark matter and dark radiation. Phys. Rev. D 92, 023531 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Pettorino, V., Amendola, L., Baccigalupi, C. & Quercellini, C. Constraints on coupled dark energy using CMB data from WMAP and south pole telescope. Phys. Rev. D 86, 103507 (2012).

  • Pourtsidou, A., Skordis, C. & Copeland, E. J. Models of dark matter coupled to dark energy. Phys. Rev. D 88, 083505 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Costa, A. A., Olivari, L. C. & Abdalla, E. Quintessence with Yukawa Interaction. Phys. Rev. D 92, 103501 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Spergel, D. N. & Steinhardt, P. J. Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Archidiacono, M., Castorina, E., Redigolo, D. & Salvioni, E. Unveiling dark fifth forces with linear cosmology. J. Cosmol. Astropart. Phys. 10, 074 (2022).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Tulin, S. & Yu, H.-B. Dark matter self-interactions and small scale structure. Phys. Rept. 730, 1–57 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Behnke, E. et al. Final results of the PICASSO dark matter search experiment. Astropart. Phys. 90, 85–92 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Abdelhameed, A. H. et al. First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 100, 102002 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Agnes, P. et al. Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50. Phys. Rev. D 107, 063001 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aalbers, J. et al. First dark matter search results from the LUX-ZEPLIN (LZ) experiment. Phys. Rev. Lett. 131, 041002 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaskins, J. M. A review of indirect searches for particle dark matter. Contemp. Phys. 57, 496–525 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conrad, J. & Reimer, O. Indirect dark matter searches in gamma and cosmic rays. Nature Phys. 13, 224–231 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rodríguez, A. B. et al. Prospects on searches for baryonic dark matter produced in b-hadron decays at LHCb. Eur. Phys. J. C 81, 964 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hayrapetyan, A. et al. Dark sector searches with the CMS experiment. Phys. Rept. 1115, 448 (2025).

  • Aad, G. et al. The quest to discover supersymmetry at the ATLAS experiment. Phys. Rep. 1116, 261–300 (2025).

  • Aad, G. et al. Exploration at the high-energy frontier: ATLAS Run 2 searches investigating the exotic jungle beyond the Standard Model. Phys. Rep. 1116, 301–385 (2025).

  • Ariga, A. et al. FASER’s physics reach for long-lived particles. Phys. Rev. D 99, 095011 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aaij, R. et al. Search for \({A}^{{\prime} }\to {\mu }^{+}{\mu }^{-}\) decays. Phys. Rev. Lett. 124, 041801 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aad, G. et al. ATLAS searches for additional scalars and exotic Higgs boson decays with the LHC Run 2 dataset. Phys. Rep. 1116, 184–260 (2025).

  • Robertson, A. et al. Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons. Mon. Not. R. Astron. Soc. 488, 3646–3662 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eckert, D. et al. Constraints on dark matter self-interaction from the internal density profiles of X-COP galaxy clusters. Astron. Astrophys. 666, A41 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Harvey, D., Chisari, N. E., Robertson, A. & McCarthy, I. G. The impact of self-interacting dark matter on the intrinsic alignments of galaxies. Mon. Not. R. Astron. Soc. 506, 441–451 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Desmond, H. & Ferreira, P. G. Galaxy morphology rules out astrophysically relevant Hu-Sawicki f(R) gravity. Phys. Rev. D 102, 104060 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Kesden, M. & Kamionkowski, M. Galilean equivalence for galactic dark matter. Phys. Rev. Lett. 97, 131303 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kaiser, N. Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 227, 1–27 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Hamilton, A. J. S. Linear Redshift Distortions: A Review, 185–275 (Springer, 1998).

  • Tutusaus, I., Bonvin, C. & Grimm, N. Measurement of the Weyl potential evolution from the first three years of dark energy survey data. Nat. Commun. 15, 9295 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonvin, C. & Fleury, P. Testing the equivalence principle on cosmological scales. J. Cosmol. Astropart. Phys. 05, 061 (2018).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Castello, S., Zheng, Z., Bonvin, C. & Amendola, L. Testing the equivalence principle across the Universe: a model-independent approach with galaxy multi-tracing. Phys. Rev. D 111, 12 (2025).

  • Sobral-Blanco, D. & Bonvin, C. Measuring the distortion of time with relativistic effects in large-scale structure. Mon. Not. R. Astron. Soc. 519, L39–L44 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kehagias, A., Noreña, J., Perrier, H. & Riotto, A. Consequences of symmetries and consistency relations in the large-scale structure of the universe for non-local bias and modified gravity. Nucl. Phys. B 883, 83–106 (2014).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Creminelli, P., Gleyzes, J., Hui, L., Simonović, M. & Vernizzi, F. Single-field consistency relations of large scale structure. Part III: test of the equivalence principle. JCAP 06, 009 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Dark Energy Spectroscopic Instrument. DESI Collaboration. https://www.desi.lbl.gov (2025).

  • Euclid Survey. Euclid Consortium. https://www.euclid-ec.org (2025).

  • Square Kilometer Array Observatory. SKAO. https://www.skao.int/en (2025).

  • Abbott, T. M. C. et al. Dark Energy Survey Year 3 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 105, 023520 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Howlett, C. et al. 2MTF – VI. Measuring the velocity power spectrum. Mon. Not. Roy. Astron. Soc. 471, 3135–3151 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huterer, D., Shafer, D., Scolnic, D. & Schmidt, F. Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities. JCAP 05, 015 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hudson, M. J. & Turnbull, S. J. The growth rate of cosmic structure from peculiar velocities at low and high redshifts. Astrophys. J. Lett. 751, L30 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Turnbull, S. J. et al. Cosmic flows in the nearby universe from Type Ia Supernovae. Mon. Not. Roy. Astron. Soc. 420, 447–454 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Davis, M. et al. Local gravity versus local velocity: solutions for β and nonlinear bias. Mon. Not. Roy. Astron. Soc. 413, 2906 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, Y.-S. & Percival, W. J. Reconstructing the history of structure formation using Redshift Distortions. JCAP 10, 004 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Blake, C. et al. Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure. Mon. Not. Roy. Astron. Soc. 436, 3089 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Alam, S. et al. Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D 103, 083533 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blake, C. et al. The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z Mon. Not. Roy. Astron. Soc. 425, 405–414 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Pezzotta, A. et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS): the growth of structure at 0.5 Astron. Astrophys. 604, A33 (2017).

    Article 

    Google Scholar
     

  • Okumura, T. et al. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ~ 1.4. Publ. Astron. Soc. Jap. 68, 38 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, G.-B. et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights. Mon. Not. Roy. Astron. Soc. 482, 3497–3513 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rubin Observatory. LSST. https://rubinobservatory.org (2025).

  • Khoury, J. & Weltman, A. Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hinterbichler, K. & Khoury, J. Symmetron fields: screening long-range forces through local symmetry restoration. Phys. Rev. Lett. 104, 231301 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Grimm, N., Bonvin, C. & Tutusaus, I. Testing general relativity through the EG statistic using the weyl potential and galaxy velocities. Phys. Rev. Lett. 133, 211004 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Adame, A. G. et al. DESI 2024 V: full-shape galaxy clustering from Galaxies and Quasars. JCAP 09, 008 (2025).

  • Akaike, H. A new look at the statistical model identification. IEEE Trans. Automatic Control 19, 716–723 (1974).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Castello, S., Wang, Z., Dam, L., Bonvin, C. & Pogosian, L. Disentangling modified gravity from a dark force with gravitational redshift. Phys. Rev. D 110, 103523 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Bottaro, S., Castorina, E., Costa, M., Redigolo, D. & Salvioni, E. Unveiling dark forces with the Large Scale Structure of the Universe. Phys. Rev. Lett. 132, 201002 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Mirpoorian, S. H., Pogosian, L., Silvestri, A. & Zhao, G.-B. New MGCAMB tests of gravity with CosmoMC and Cobaya. JCAP 08, 038 (2023).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Chamings, F. N., Avgoustidis, A., Copeland, E. J., Green, A. M. & Pourtsidou, A. Understanding the suppression of structure formation from dark matter-dark energy momentum coupling. Phys. Rev. D 101, 043531 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Aghamousa, A. et al. The DESI experiment part I: science,targeting, and survey design. Preprint at https://arxiv.org/abs/1611.00036 (2016).

  • Tutusaus, I., Sobral-Blanco, D. & Bonvin, C. Combining gravitational lensing and gravitational redshift to measure the anisotropic stress with future galaxy surveys. Phys. Rev. D 107, 083526 (2023).

  • Perenon, L. et al. Multi-tasking the growth of cosmological structures. Phys. Dark Univ. 34, 100898 (2021).

    Article 

    Google Scholar
     

  • Amendola, L., Kunz, M. & Sapone, D. Measuring the dark side (with weak lensing). JCAP 0804, 013 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Daniel, S. F., Caldwell, R. R., Cooray, A. & Melchiorri, A. Large scale structure as a probe of gravitational slip. Phys. Rev. D77, 103513 (2008).

    ADS 

    Google Scholar
     

  • Bonvin, C. & Pogosian, L. Modified Einstein versus modified Euler for dark matter. Nature Astron. 7, 1127–1134 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Archidiacono, M. et al. Constraining dark matter-dark radiation interactions with CMB, BAO, and Lyman-α. J. Cosmol. Astropart. Phys. 10, 055 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Castello, S., Grimm, N. & Bonvin, C. Rescuing constraints on modified gravity using gravitational redshift in large-scale structure. Phys. Rev. D 106, 083511 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Bertschinger, E. & Zukin, P. Distinguishing modified gravity from dark energy. Phys. Rev. D 78, 024015 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Pogosian, L., Silvestri, A., Koyama, K. & Zhao, G.-B. How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations. Phys. Rev. D 81, 104023 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Adame, A. G. et al. DESI 2024 VII: cosmological constraints from the full-shape modeling of clustering measurements. JCAP 07, 028 (2025).

  • Sloan Digital Sky Survey. SDSS Collaboration. https://www.sdss.org/ (2025).

  • WiggleZ Dark Energy Survey. WiggleZ Collaboration. https://wigglez.swin.edu.au/site/forward.html (2025).

  • Satpathy, S. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: on the measurement of growth rate using galaxy correlation functions. Mon. Not. R. Astron. Soc. 469, 1369–1382 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schirra, A. P., Quartin, M. & Amendola, L. A model-independent measurement of the expansion and growth rates from BOSS using the FreePower method. Phys. Dark Universe 49, 102033 (2025).

  • Blanchard, A. et al. Euclid preparation: VII. Forecast validation for Euclid cosmological probes. Astron. Astrophys. 642, A191 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Amendola, L., Pietroni, M. & Quartin, M. Fisher matrix for the one-loop galaxy power spectrum: measuring expansion and growth rates without assuming a cosmological model. JCAP 11, 023 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Asgari, M. et al. KiDS-1000 cosmology: cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. 645, A104 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Abbott, T. M. C. et al. Dark energy survey year 1 results: constraints on extended cosmological models from galaxy clustering and weak lensing. Phys. Rev. D 99, 123505 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abbott, T. M. C. et al. Dark energy survey year 3 results: constraints on extensions to ΛCDM with weak lensing and galaxy clustering. Phys. Rev. D 107, 083504 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grimm, N. Fifth force from fhat and Jhat. Zenodo, https://doi.org/10.5281/zenodo.17078450 (2025).

  • Lewis, A., Challinor, A. & Lasenby, A. Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 538, 473–476 (2000).

    Article 
    ADS 

    Google Scholar