• Blancou, J., Chomel, B. B., Belotto, A. & Meslin, F. X. Emerging or re-emerging bacterial zoonoses: factors of emergence, surveillance and control. Vet. Res. 36, 507–522 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Shaheen, M. N. F. The concept of one health applied to the problem of zoonotic diseases. Rev. Med. Virol. 32, e2326 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Nandi, A. & Allen, L. J. S. Probability of a zoonotic spillover with seasonal variation. Infect. Dis. Model. 6, 514–531 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • One Health High-Level Expert Panel (OHHLEP) One health: a new definition for a sustainable and healthy future. PLOS Pathog. 18, e1010537 (2022).

    Article 

    Google Scholar
     

  • Nava, A., Shimabukuro, J. S., Chmura, A. A. & Luz, S. L. B. The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR J. 58, 393–400 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LaDeau, S. L., Calder, C. A., Doran, P. J. & Marra, P. P. West Nile virus impacts in American crow populations are associated with human land use and climate. Ecol. Res. 26, 909 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kruger, S. E., Lorah, P. A. & Okamoto, K. W. Mapping climate change’s impact on cholera infection risk in Bangladesh. PLOS Glob. Public Health 2, e0000711 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Mora, C. et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Change 12, 869–875 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kariuki, S., Kering, K., Wairimu, C., Onsare, R. & Mbae, C. Antimicrobial resistance rates and surveillance in sub-Saharan Africa: where are we now?. Infect. Drug Resist. 15, 3589–3609 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fatica, M. K. & Schneider, K. R. Salmonella and produce: survival in the plant environment and implications in food safety. Virulence 2, 573–579 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, H., Whitehouse, C. A. & Li, B. Presence and persistence of Salmonella in water: the impact on microbial quality of water and food safety. Front. Public Health 6, 159 (2018).

  • Majowicz, S. E. et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. Publ. Infect. Dis. Soc. Am. 50, 882–889 (2010).

    Article 

    Google Scholar
     

  • Hald, T. et al. World Health Organization estimates of the relative contributions of food to the burden of disease due to selected foodborne hazards: a structured expert elicitation. PLoS ONE 11, e0145839 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy, E. A., Shaw, A. V. & Crump, J. A. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect. Dis. 10, 417–432 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feasey, N. A. et al. Three epidemics of invasive multidrug-resistant salmonella bloodstream infection in Blantyre, Malawi, 1998–2014. Clin. Infect. Dis. Publ. Infect. Dis. Soc. Am. 61, S363–S371 (2015).

    Article 

    Google Scholar
     

  • Uche, I. V., MacLennan, C. A. & Saul, A. A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014). PLoS Negl. Trop. Dis. 11, e0005118 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchello, C. S., Dale, A. P., Pisharody, S., Rubach, M. P. & Crump, J. A. A systematic review and meta-analysis of the prevalence of community-onset bloodstream infections among hospitalized patients in Africa and Asia. Antimicrob. Agents Chemother. 64, https://doi.org/10.1128/aac.01974-19 (2019).

  • Balasubramanian, R. et al. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum. Vaccines Immunother. 15, 1421–1426 (2018).

    Article 

    Google Scholar
     

  • Park, S. E. et al. The genomic epidemiology of multi-drug resistant invasive non-typhoidal Salmonella in selected sub-Saharan African countries. BMJ Glob. Health 6, e005659 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akullian, A. et al. Multi-drug resistant non-typhoidal Salmonella associated with invasive disease in western Kenya. PLoS Negl. Trop. Dis. 12, e0006156 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feasey, N. A. et al. Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat. Genet. 48, 1211–1217 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingsley, R. A. et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 19, 2279–2287 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pulford, C. V. et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat. Microbiol. 6, 327–338 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Puyvelde, S. et al. An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nat. Commun. 10, 4280 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • LEI International Policy et al. Dynamics of Food Systems in Sub-Saharan Africa: Implications for Consumption Patterns and Farmers’ Position in Food Supply Chains. https://research.wur.nl/en/publications/973b48c2-2933-4e13-825e-3815fe9be428; https://doi.org/10.18174/417176 (2017).

  • Nyokabi, S. et al. Informal value chain actors’ knowledge and perceptions about zoonotic diseases and biosecurity in Kenya and the importance for food safety and public health. Trop. Anim. Health Prod. 50, 509–518 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Cocker, D. et al. Investigating One Health risks for human colonisation with extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Malawian households: a longitudinal cohort study. Lancet Microbe S2666524723000629 https://doi.org/10.1016/S2666-5247(23)00062-9 (2023).

  • Hassell, J. M. et al. Clinically relevant antimicrobial resistance at the wildlife–livestock–human interface in Nairobi: an epidemiological study. Lancet Planet. Health 3, e259–e269 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pathogenwatch | A Global Platform for Genomic Surveillance. https://pathogen.watch/.

  • Kariuki, S., Gordon, M. A., Feasey, N. & Parry, C. M. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33, C21–C29 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parisi, A. et al. The role of animals as a source of antimicrobial resistant nontyphoidal Salmonella causing invasive and non-invasive human disease in Vietnam. Infect. Genet. Evol. 85, 104534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musicha, P. et al. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998–2016): a surveillance study. Lancet Infect. Dis. 17, 1042–1052 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, J. & Nash, J. H. E. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genomics 4, e000206 (2018).

  • Seemann, T. ABRicate. Github https://github.com/tseemann/abricate. (2021).

  • Tonkin-Hill, G. et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 21, 180 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorpe, H. A. et al. A large-scale genomic snapshot of Klebsiella spp. isolates in Northern Italy reveals limited transmission between clinical and non-clinical settings. Nat. Microbiol. 7, 2054–2067 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day, M. J. et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect. Dis. 19, 1325–1335 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ludden, C. et al. One health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock. mBio 10, https://doi.org/10.1128/mbio.02693-18 (2019).

  • Gouliouris, T. et al. Genomic surveillance of enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and humans in the United Kingdom. mBio 9, e01780-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muloi, D. M. et al. Population genomics of Escherichia coli in livestock-keeping households across a rapidly developing urban landscape. Nat. Microbiol. 7, 581–589 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Fukushima, K., Yanagisawa, N., Sekiya, N. & Izumiya, H. Bacteremia caused by Salmonella Poona in a healthy adult in Tokyo, Japan. Intern. Med. 59, 289–292 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lang, B. Y., Varman, M., Reindel, R. & Hasley, B. P. Salmonella Gaminara osteomyelitis and septic arthritis in an infant with exposure to bearded dragon. Infect. Dis. Clin. Pract. 15, 348–350 (2007).

    Article 

    Google Scholar
     

  • Makendi, C. et al. A phylogenetic and phenotypic analysis of Salmonella enterica serovar Weltevreden, an emerging agent of diarrheal disease in tropical regions. PLoS Negl. Trop. Dis. 10, e0004446 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyene, G. et al. Multidrug resistant Salmonella Concord is a major cause of salmonellosis in children in Ethiopia. J. Infect. Dev. Ctries. 5, 023–033 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Nutrition, C. for F. S. & A. Outbreak Investigation of Salmonella Oranienburg: Whole, Fresh Onions (October 2021). FDA (2022).

  • Mankhomwa, J. et al. A qualitative study of antibiotic use practices in intensive small-scale farming in urban and peri-urban Blantyre, Malawi: implications for antimicrobial resistance. Front. Vet. Sci. 9, 876513 (2022).

  • Post, A. S. et al. Supporting evidence for a human reservoir of invasive non-Typhoidal Salmonella from household samples in Burkina Faso. PLoS Negl. Trop. Dis. 13, e0007782 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koolman, L. et al. Case-control investigation of invasive Salmonella disease in Malawi reveals no evidence of environmental or animal transmission of invasive strains, and supports human to human transmission. PLoS Negl. Trop. Dis. 16, e0010982 (2022).

  • Crump, J. A. et al. Investigating the meat pathway as a source of human nontyphoidal Salmonella bloodstream infections and diarrhea in East Africa. Clin. Infect. Dis. 73, e1570–e1578 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassell, J. M. et al. Epidemiological connectivity between humans and animals across an urban landscape. Proc. Natl Acad. Sci. USA 120, e2218860120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Octavia, S., Wang, Q., Tanaka, M. M., Sintchenko, V. & Lan, R. Genomic variability of serial human isolates of Salmonella enterica serovar Typhimurium associated with prolonged carriage. J. Clin. Microbiol. 53, 3507–3514 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chidziwisano, K., Slekiene, J., Kumwenda, S., Mosler, H.-J. & Morse, T. Toward complementary food hygiene practices among child caregivers in rural Malawi. Am. J. Trop. Med. Hyg. 101, 294–303 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musoke, D. et al. The role of Environmental Health in preventing antimicrobial resistance in low- and middle-income countries. Environ. Health Prev. Med. 26, 100 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Now 8 billion and counting: Where the world’s population has grown most and why that matters |. UNCTAD https://unctad.org/data-visualization/now-8-billion-and-counting-where-worlds-population-has-grown-most-and-why (2022).

  • FAO—News Article: Small family farmers produce a third of the world’s food. https://www.fao.org/news/story/en/item/1395127/icode/.

  • Paediatrics, R. C., Committee, C. H. & HULL, P. S. Guidelines for the ethical conduct of medical research involving children. Arch. Dis. Child. 82, 177–182 (2000).

    Article 
    PubMed Central 

    Google Scholar
     

  • Welcome to the QGIS project! https://www.qgis.org/en/site/.

  • Chipeta, M., Terlouw, D., Phiri, K. & Diggle, P. Inhibitory geostatistical designs for spatial prediction taking account of uncertain covariance structure. Environmetrics 28, e2425 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hartung, C. et al. Open data kit: tools to build information services for developing regions. in Proceedings of the 4th ACM/IEEE International Conference on Information and Communication Technologies and Development 1–12. https://doi.org/10.1145/2369220.2369236 (Association for Computing Machinery, 2010).

  • De Medici, D. et al. Evaluation of DNA extraction methods for use in combination with SYBR Green I real-time PCR To detect Salmonella enterica serotype enteritidis in poultry. Appl. Environ. Microbiol. 69, 3456–3461 (2003).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hensel, M., Hinsley, A. P., Nikolaus, T., Sawers, G. & Berks, B. C. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32, 275–287 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Custom DNA Oligos. https://www.sigmaaldrich.com/GB/en/custom-pdp/061ac088-00b9-47c0-8a48-faab9ca7f281.

  • Babraham Bioinformatics—FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

  • Kraken: ultrafast metagenomic sequence classification using exact alignments | Genome Biology | Full Text. https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-3-r46.

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • assembly-stats. Pathogen Informatics, Wellcome Sanger Institute. Github https://github.com/sanger-pathogens/assembly-stats. (2022).

  • Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinforma. Oxf. Engl. 29, 1072–1075 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yoshida, C. E. et al. The Salmonella In Silico Typing Resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS ONE. 11, e0147101 (2016).

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments | Microbiology Society. https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.000056.

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadfield, J. et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34, 292–293 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49, W293–W296 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinforma. 69, e96 (2020).

    Article 

    Google Scholar
     

  • AMRFinderPlus—Pathogen Detection—NCBI. https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/.

  • Feldgarden, M. et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 11, 12728 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Harris, S. Pairwise Difference Count. https://github.com/simonrharris/pairwise_difference_count. (2020).

  • Seemann, T. snp-dists. https://github.com/tseemann/snp-dists (2021).

  • igraph—Network analysis software. https://igraph.org/.

  • Yu, D., Zhao, Y., Yin, C., Liang, F. & Chen, W. A network analysis of the association between intergroup contact and intergroup relations. Psychol. Res. Behav. Manag. 15, 51–69 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R: a language and environment for statistical computing. https://www.r-project.org/ (2021).

  • Wilson, C. Circulation of Salmonella spp. between humans, animals and the environment in animal-owning households in Malawi. (2025).

  • NIAID Visual & Medical Arts. (10/7/2024). Lizard Outline. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/302.

  • NIAID Visual & Medical Arts. (3/27/2025). Sunflower. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/620.

  • NIAID Visual & Medical Arts. (4/24/2025). Goat. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/636.

  • NIAID Visual & Medical Arts. (10/7/2024). Duck Silhouette. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/135.

  • NIAID Visual & Medical Arts. (10/7/2024). Domestic Chicken. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/131.

  • NIAID Visual & Medical Arts. (3/12/2025). Domestic Dog. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/594.

  • NIAID Visual & Medical Arts. (10/7/2024). Lab Mouse. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/279.

  • NIAID Visual & Medical Arts. (10/7/2024). Unisex Icon. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/13.