• Nocelli C, Cappelli K, Capomaccio S, Pascucci L, Mercati F, Pazzaglia I, et al. Shedding light on cashmere goat hair follicle biology: from morphology analyses to transcriptomic landascape. BMC Genomics. 2020;21(1):458.


    Google Scholar
     

  • Li C, Feng C, Ma G, Fu S, Chen M, Zhang W, et al. Time-course RNA-seq analysis reveals stage-specific and melatonin-triggered gene expression patterns during the hair follicle growth cycle in Capra hircus. BMC Genomics. 2022;23(1):140.


    Google Scholar
     

  • Yang F, Liu Z, Zhao M, Mu Q, Che T, Xie Y, et al. Skin transcriptome reveals the periodic changes in genes underlying cashmere (ground hair) follicle transition in cashmere goats. BMC Genomics. 2020;21(1):392.


    Google Scholar
     

  • Gong G, Fan Y, Yan X, Li W, Yan X, Liu H, et al. Identification of genes related to hair follicle cycle development in inner Mongolia cashmere goat by WGCNA. Front Vet Sci. 2022;9:894380.


    Google Scholar
     

  • Foldes A, Hoskinson RM, Baker P, McDonald BJ, Maxwell CA, Restall BJ. Effect of immunization against melatonin on seasonal fleece growth in feral goats. J Pineal Res. 1992;13(2):85–94.


    Google Scholar
     

  • Zhang L, Duan C, Guo Y, Zhang Y, Liu Y. Inhibition of prolactin promotes secondary skin follicle activation in cashmere goats. J Anim Sci. 2021;99(4):skab079.


    Google Scholar
     

  • Diao X, Yao L, Wang X, Li S, Qin J, Yang L, et al. Hair follicle development and cashmere traits in Albas goat kids. Animals. 2023;13(4):617.


    Google Scholar
     

  • Gong G, Fan Y, Zhang Y, Yan X, Li W, Yan X, et al. The regulation mechanism of different hair types in inner Mongolia cashmere goat based on PI3K-AKT pathway and FGF21. J Anim Sci. 2022;100(11):skac292.


    Google Scholar
     

  • Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014;15(1):1647–70.


    Google Scholar
     

  • Su R, Gong G, Zhang L, Yan X, Wang F, Zhang L, et al. Screening the key genes of hair follicle growth cycle in inner Mongolian cashmere goat based on RNA sequencing. Arch Anim Breed. 2020;63(1):155–64.


    Google Scholar
     

  • Liu Y, Guerrero-Juarez CF, Xiao F, Shettigar NU, Ramos R, Kuan CH, et al. Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Dev Cell. 2022;57(14):1758–75. e7.


    Google Scholar
     

  • Tiwari M, Gujar G, Shashank CG, Ponsuksili S. Selection signatures for high altitude adaptation in livestock: a review. Gene. 2024;927:148757.


    Google Scholar
     

  • Kulessa H, Turk G, Hogan BL. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 2000;19(24):6664–74.


    Google Scholar
     

  • Botchkarev VA, Sharov AA. BMP signaling in the control of skin development and hair follicle growth. Differentiation. 2004;72(9–10):512–26.


    Google Scholar
     

  • Claustrat B, Leston J, Melatonin. Physiological effects in humans. Neurochirurgie. 2015;61(2–3):77–84.


    Google Scholar
     

  • Zhang CZ, Sun HZ, Li SL, Sang D, Zhang CH, Jin L, et al. Effects of photoperiod on nutrient digestibility, hair follicle activity and cashmere quality in inner Mongolia white cashmere goats. Asian-Australas J Anim Sci. 2019;32(4):541–7.


    Google Scholar
     

  • Klören WRL, Norton BW. Melatonin and fleece growth in Australian cashmere goats. Small Ruminant Res. 1995;17(2):179–85.


    Google Scholar
     

  • Chai Y, Liu Z, Fu S, Liu B, Guo L, Dai L, et al. Effects of exogenous melatonin on expressional differences of immune-related genes in cashmere goats. Front Genet. 2022;13:967402.


    Google Scholar
     

  • Gao Y, Duo L, Zhe X, Hao L, Song W, Gao L, et al. Developmental mapping of hair follicles in the embryonic stages of cashmere goats using proteomic and metabolomic construction. Animals. 2023;13(19):3076.


    Google Scholar
     

  • Zhao B, Wu C, Sammad A, Ma Z, Suo L, Wu Y, et al. The fiber diameter traits of Tibetan cashmere goats are governed by the inherent differences in stress, hypoxic, and metabolic adaptations: an integrative study of proteome and transcriptome. BMC Genomics. 2022;23(1):191.


    Google Scholar
     

  • Nai R, Zhang C, Xie Y, Man D, Li H, Ma L, et al. A comparative proteomic-based study identifies essential factors involved in hair follicle growth in Inner Mongolia cashmere goats. BMC Vet Res. 2025;21(1):118.


    Google Scholar
     

  • Han X, Gao G, Sun N, Dai B, Ren L, Bai H, et al. Comparative proteomic analysis of the telogen-to-anagen transition in cashmere goat secondary hair follicles. Front Vet Sci. 2025;12:1542682.


    Google Scholar
     

  • Tian D, Zhang W, Wang L, Qi J, Xu T, Zuo M, et al. Proteo-transcriptomic profiles reveal genetic mechanisms underlying primary hair follicle development in coarse sheep fetal skin. J Proteomics. 2025;310:105327.


    Google Scholar
     

  • Wang S, Luo Z, Zhang Y, Yuan D, Ge W, Wang X. The inconsistent regulation of HOXC13 on different keratins and the regulation mechanism on HOXC13 in cashmere goat (Capra hircus). BMC Genomics. 2018;19(1):630.


    Google Scholar
     

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.


    Google Scholar
     

  • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.


    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.


    Google Scholar
     

  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.


    Google Scholar
     

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.


    Google Scholar
     

  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.


    Google Scholar
     

  • Yu G, Wang LG, Han Y, He QY. Clusterprofiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology. 2012;16(5):284–7.


    Google Scholar
     

  • Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2020;17(1):41–4.


    Google Scholar
     

  • Wen B, Mei Z, Zeng C, Liu S. MetaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics. 2017;18(1):183.


    Google Scholar
     

  • Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell. 2002;2(5):643–53.


    Google Scholar
     

  • Hwang J, Mehrani T, Millar SE, Morasso MI. Dlx3 is a crucial regulator of hair follicle differentiation and cycling. Development. 2008;135(18):3149–59.


    Google Scholar
     

  • Sun H, He Z, Xi Q, Zhao F, Hu J, Wang J, et al. Lef1 and Dlx3 may facilitate the maturation of secondary hair follicles in the skin of Gansu alpine Merino. Genes. 2022;13(8):1326.


    Google Scholar
     

  • Guo T, Han J, Yuan C, Liu J, Niu C, Lu Z, et al. Comparative proteomics reveals genetic mechanisms underlying secondary hair follicle development in fine wool sheep during the fetal stage. J Proteomics. 2020;223:103827.


    Google Scholar
     

  • Ma S, Meng Z, Chen R, Guan KL. The hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.


    Google Scholar
     

  • Li W, Lu ZF, Man XY, Li CM, Zhou J, Chen JQ, et al. VEGF upregulates VEGF receptor-2 on human outer root sheath cells and stimulates proliferation through ERK pathway. Mol Biol Rep. 2012;39(9):8687–94.


    Google Scholar
     

  • Akilli Öztürk Ö, Pakula H, Chmielowiec J, Qi J, Stein S, Lan L, et al. Gab1 and Mapk signaling are essential in the hair cycle and hair follicle stem cell quiescence. Cell Rep. 2015;13(3):561–72.


    Google Scholar
     

  • Harel S, Higgins CA, Cerise JE, Dai Z, Chen JC, Clynes R, et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv. 2015;1(9):e1500973.


    Google Scholar
     

  • Jin GR, Hwang SB, Park HJ, Lee BH, Boisvert WA. Microinjury-induced tumor necrosis factor-α surge stimulates hair regeneration in mice. Skin Pharmacol Physiol. 2023;36(1):27–37.


    Google Scholar
     

  • Wang X, Chen H, Tian R, Zhang Y, Drutskaya MS, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5(+) stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091.


    Google Scholar
     

  • Zorn AM. Wnt signalling: antagonistic Dickkopfs. Curr Biol. 2001;11(15):R592–5.


    Google Scholar
     

  • Veltri A, Lang C, Lien WH. Concise review: Wnt signaling pathways in skin development and epidermal stem cells. Stem Cells. 2018;36(1):22–35.


    Google Scholar
     

  • Potter CS, Pruett ND, Kern MJ, Baybo MA, Godwin AR, Potter KA, et al. The nude mutant gene Foxn1 is a HOXC13 regulatory target during hair follicle and nail differentiation. J Invest Dermatol. 2011;131(4):828–37.


    Google Scholar
     

  • Ota Y, Saitoh Y, Suzuki S, Ozawa K, Kawano M, Imamura T. Fibroblast growth factor 5 inhibits hair growth by blocking dermal papilla cell activation. Biochem Biophys Res Commun. 2002;290(1):169–76.


    Google Scholar
     

  • Xu T, Guo X, Wang H, Hao F, Du X, Gao X, et al. Differential gene expression analysis between anagen and telogen of Capra hircus skin based on the de novo assembled transcriptome sequence. Gene. 2013;520(1):30–8.


    Google Scholar
     

  • Zhu B, Xu T, Yuan J, Guo X, Liu D. Transcriptome sequencing reveals differences between primary and secondary hair follicle-derived dermal papilla cells of the cashmere goat (Capra hircus). PLoS One. 2013;8(9):e76282.


    Google Scholar
     

  • Kakugawa S, Langton PF, Zebisch M, Howell S, Chang TH, Liu Y, et al. Notum deacylates Wnt proteins to suppress signalling activity. Nature. 2015;519(7542):187–92.


    Google Scholar
     

  • Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J. Beyond Wnt inhibition: new functions of secreted frizzled-related proteins in development and disease. J Cell Sci. 2008;121(Pt 6):737–46.


    Google Scholar
     

  • Kwack MH, Ahn JS, Jang JH, Kim JC, Sung YK, Kim MK. SFRP2 augments Wnt/β-catenin signalling in cultured dermal papilla cells. Exp Dermatol. 2016;25(10):813–5.


    Google Scholar
     

  • Abe Y, Tanaka N. Roles of the Hedgehog signaling pathway in epidermal and hair follicle development, homeostasis, and cancer. J Dev Biol. 2017;5(4):12.


    Google Scholar
     

  • Hwang KA, Hwang YL, Lee MH, Kim NR, Roh SS, Lee Y, et al. Adenosine stimulates growth of dermal papilla and lengthens the anagen phase by increasing the cysteine level via fibroblast growth factors 2 and 7 in an organ culture of mouse vibrissae hair follicles. Int J Mol Med. 2012;29(2):195–201.


    Google Scholar
     

  • Liu X, Zhang P, Zhang X, Li X, Bai Y, Ao Y, et al. Fgf21 knockout mice generated using CRISPR/Cas9 reveal genetic alterations that may affect hair growth. Gene. 2020;733:144242.


    Google Scholar
     

  • Wang J, Sui J, Mao C, Li X, Chen X, Liang C, et al. Identification of key pathways and genes related to the development of hair follicle cycle in cashmere goats. Genes. 2021;12(2):180.


    Google Scholar
     

  • Wang E, Harel S, Christiano AM. JAK-STAT signaling jump starts the hair cycle. J Invest Dermatol. 2016;136(11):2131–2.


    Google Scholar
     

  • Attisano L, Wrana JL. Signal integration in TGF-β, WNT, and Hippo pathways. F1000Prime Rep. 2013;5:17.


    Google Scholar
     

  • Liu Z, Liu Z, Mu Q, Zhao M, Cai T, Xie Y, et al. Identification of key pathways and genes that regulate cashmere development in cashmere goats mediated by exogenous melatonin. Front Vet Sci. 2022;9:993773.


    Google Scholar
     

  • Zhang J, He XC, Tong WG, Johnson T, Wiedemann LM, Mishina Y, et al. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells. 2006;24(12):2826–39.


    Google Scholar
     

  • Oshimori N, Fuchs E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell. 2012;10(1):63–75.


    Google Scholar
     

  • Geng R, Yuan C, Chen Y. Exploring differentially expressed genes by RNA-seq in cashmere goat (Capra hircus) skin during hair follicle development and cycling. PLoS One. 2013;8(4):e62704.


    Google Scholar
     

  • Jin M, Wang L, Li S, Xing MX, Zhang X. Characterization and expression analysis of KAP7.1, KAP8.2 gene in Liaoning new-breeding cashmere goat hair follicle. Mol Biol Rep. 2011;38(5):3023–8.


    Google Scholar
     

  • Almeida AM, Plowman JE, Harland DP, Thomas A, Kilminster T, Scanlon T, et al. Influence of feed restriction on the wool proteome: a combined iTRAQ and fiber structural study. J Proteomics. 2014;103:170–7.


    Google Scholar
     

  • Yu Z, Wildermoth JE, Wallace OA, Gordon SW, Maqbool NJ, Maclean PH, et al. Annotation of sheep keratin intermediate filament genes and their patterns of expression. Exp Dermatol. 2011;20(7):582–8.


    Google Scholar
     

  • Huang D, Ding H, Wang Y, Wang X, Zhao H. Integration analysis of hair follicle transcriptome and proteome reveals the mechanisms regulating wool fiber diameter in Angora rabbits. Int J Mol Sci. 2024;25(6):3260.


    Google Scholar
     

  • Yu Z, Gordon SW, Nixon AJ, Bawden CS, Rogers MA, Wildermoth JE, et al. Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles. Differentiation. 2009;77(3):307–16.


    Google Scholar
     

  • Liang S, Bao Z, Zhao B, Zhou T, Li J, Liu M, et al. Characterization and functional analysis of Krtap11-1 during hair follicle development in Angora rabbits (Oryctolagus cuniculus). Genes Genomics. 2020;42(11):1281–90.


    Google Scholar
     

  • Zhao Z, Liu G, Li X, Huang J, Xiao Y, Du X, et al. Characterization of the promoter regions of two sheep keratin-associated protein genes for hair cortex-specific expression. PLoS One. 2016;11(4):e0153936.


    Google Scholar
     

  • Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46.


    Google Scholar
     

  • Zhang X, Bao P, Ye N, Zhou X, Zhang Y, Liang C, et al. Identification of the key genes associated with the Yak hair follicle cycle. Genes. 2021;13(1):32.


    Google Scholar
     

  • Zhang Y, Wang L, Li Z, Chen D, Han W, Wu Z, et al. Transcriptome profiling reveals transcriptional and alternative splicing regulation in the early embryonic development of hair follicles in the cashmere goat. Sci Rep. 2019;9(1):17735.


    Google Scholar
     

  • Gong H, Zhou H, Forrest RH, Li S, Wang J, Dyer JM, et al. Wool keratin-associated protein genes in sheep-a review. Genes. 2016;7(6):24.


    Google Scholar
     

  • Bao Q, Zhang X, Bao P, Liang C, Guo X, Yin M, et al. Genome-wide identification, characterization, and expression analysis of keratin genes (KRTs) family in Yak (Bos grunniens). Gene. 2022;818:146247.


    Google Scholar
     

  • Zhang C, Qin Q, Liu Z, Xu X, Lan M, Xie Y, et al. Identification of the key proteins associated with different hair types in sheep and goats. Front Genet. 2022;13:993192.


    Google Scholar