• Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Mao, Y. et al. Integrating quantum key distribution with classical communications in backbone fiber network. Opt. Express 26, 6010 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yin, J. et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kwiat, P. G. Hyper-entangled states. J. Mod. Opt. 44, 2173 (1997).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Simon, C. & Poizat, J.-P. Creating single time-bin-entangled photon pairs. Phys. Rev. Lett. 94, 030502 (2005).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gisin, N. & Thew, R. Quantum communication. Nat. Photonics 1, 165 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Jacobs, B. C., Pittman, T. B. & Franson, J. D. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. 95, 045006 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Lodahl, P. Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 3, 013001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Schöll, E. et al. Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability. Nano Lett. 19, 2404 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Huber, D. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 8, 15506 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolters, J. et al. Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Neuwirth, J. et al. Quantum dot technology for quantum repeaters: from entangled photon generation toward the integration with quantum memories. Mater. Quantum Technol. 1, 043001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Thomas, S. E. et al. Deterministic storage and retrieval of telecom light from a quantum dot single-photon source interfaced with an atomic quantum memory. Sci. Adv. 10, eadi7346 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, C.-Y. & Pan, J.-W. Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol. 16, 1294 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Telecom-band quantum dot technologies for long-distance quantum networks. Nat. Nanotechnol. 18, 1389 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stevenson, R. M. et al. Quantum teleportation of laser-generated photons with an entangled-light-emitting diode. Nat. Commun. 4, 2859 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Nilsson, J. et al. Quantum teleportation using a light-emitting diode. Nat. Photonics 7, 311 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Huwer, J. et al. Quantum-dot-based telecommunication-wavelength quantum relay. Phys. Rev. Appl. 8, 024007 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Reindl, M. et al. All-photonic quantum teleportation using on-demand solid-state quantum emitters. Sci. Adv. 4, eaau1255 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, M. et al. Quantum teleportation using highly coherent emission from telecom C-band quantum dots. npj Quantum Inf. 6, 14 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, M. et al. Gigahertz-clocked teleportation of time-bin qubits with a quantum dot in the telecommunication C band. Phys. Rev. Appl. 13, 054052 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Basso Basset, F. et al. Entanglement swapping with photons generated on demand by a quantum dot. Phys. Rev. Lett. 123, 160501 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zopf, M. et al. Entanglement swapping with semiconductor-generated photons violates Bell’s inequality. Phys. Rev. Lett. 123, 160502 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Basso Basset, F. et al. Quantum teleportation with imperfect quantum dots. npj Quantum Inf. 7, 7 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218 (2016).

    Article 

    Google Scholar
     

  • Bennett, A. J., Patel, R. B., Nicoll, C. A., Ritchie, D. A. & Shields, A. J. Interference of dissimilar photon sources. Nat. Phys. 5, 715 (2009).

    Article 

    Google Scholar
     

  • Weber, J. H. et al. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol. 14, 23 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).

    Article 
    ADS 

    Google Scholar
     

  • You, X. et al. Quantum interference with independent single-photon sources over 300 km fiber. Adv. Photonics 4, 066003 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ates, S. et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In (Ga) As/(Al) GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Trotta, R. et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys. Rev. Lett. 109, 147401 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Huber, D. et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rota, M. B. et al. A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot. eLight 4, 13 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basso Basset, F. et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, eabe6379 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basso Basset, F. et al. Daylight entanglement-based quantum key distribution with a quantum dot source. Quantum Sci. Technol. 8, 025002 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jayakumar, H. et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gurioli, M., Wang, Z., Rastelli, A., Kuroda, T. & Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater. 18, 799 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schliwa, A., Winkelnkemper, M. & Bimberg, D. Few-particle energies versus geometry and composition of InxGa1−xAs/GaAs self-organized quantum dots. Phys. Rev. B 79, 075443 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Legero, T., Wilk, T., Hennrich, M., Rempe, G. & Kuhn, A. Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schöll, E. et al. Crux of using the cascaded emission of a three-level quantum ladder system to generate indistinguishable photons. Phys. Rev. Lett. 125, 233605 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Rota, M. B., Basset, F. B., Tedeschi, D. & Trotta, R. Entanglement teleportation with photons from quantum dots: toward a solid-state based quantum network. IEEE J. Sel. Top. Quantum Electron. 26, 1 (2020).

    Article 

    Google Scholar
     

  • Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259 (1995).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Valivarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photonics 10, 676 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Q.-C. et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photonics 10, 671 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Valivarthi, R. et al. Teleportation systems toward a quantum internet. PRX Quantum 1, 020317 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J. Enhancing quantum teleportation efficacy with noiseless linear amplification. Nat. Commun. 14, 4745 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strobel, T. et al. Quantum teleportation with telecom photons from remote quantum emitters, arXiv preprint https://doi.org/10.48550/arXiv.2411.12904 (2024).

  • Kuhlmann, A. V. et al. Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Undeutsch, G. et al. Electric-field control of photon indistinguishability in cascaded decays in quantum dots. Nano Lett. 25, 7121 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. N. J. Phys. 20, 115003 (2018).

    Article 

    Google Scholar
     

  • Ghosh, S. et al. Distinguishability of Bell states. Phys. Rev. Lett. 87, 277902 (2001).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Barbieri, M., Vallone, G., Mataloni, P. & De, F. Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75, 042317 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Calsamiglia, J. & Lütkenhaus, N. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Nielsen, M. A. and Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2010).

  • Knee, G. C., Bolduc, E., Leach, J. & Gauger, E. M. Quantum process tomography via completely positive and trace-preserving projection. Phys. Rev. A 98, 062336 (2018).

    Article 
    ADS 

    Google Scholar