• Fu J, Wang Z, Huang L, Zheng S, Wang D, Chen S, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of astragalus membranaceus (Huangqi). Phytother Res. 2014;28(9):1275–83.


    Google Scholar
     

  • Li S, Sun Y, Huang J, Wang B, Gong Y, Fang Y, Liu Y, Wang S, Guo Y, Wang H, et al. Anti-tumor effects and mechanisms of astragalus Membranaceus (AM) and its specific immunopotentiation: status and prospect. J Ethnopharmacol. 2020;258:112797.


    Google Scholar
     

  • Li B, Zhang Q, Chen Y, Su Y, Sun S, Chen G. Different crop rotation systems change the rhizosphere bacterial community structure of astragalus Membranaceus (Fisch) Bge. var. Mongholicus (Bge.) Hsiao. Appl Soil Ecol. 2021;166:104003.


    Google Scholar
     

  • Wang Y, Liu X, Hu T, Li X, Chen Y, Xiao G, Huang J, Chang Y, Zhu Y, Zhang H, et al. Astragalus saponins improves stroke by promoting the proliferation of neural stem cells through phosphorylation of Akt. J Ethnopharmacol. 2021;277:114224.


    Google Scholar
     

  • Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y. A review of the pharmacological action of astragalus polysaccharide. Front Pharmacol. 2020;11:349.


    Google Scholar
     

  • Abd EA, Elkader HT, Essawy AE, Al-Shami AS. Astragalus species: phytochemistry, biological actions and molecular mechanisms underlying their potential neuroprotective effects on neurological diseases. Phytochemistry. 2022;202:113293.


    Google Scholar
     

  • Agyemang K, Han L, Liu E, Zhang Y, Wang T, Gao X. Recent advances in astragalus Membranaceus Anti-Diabetic research: Pharmacological effects of its phytochemical constituents. Evidence-based Complement Altern Medicine: eCAM. 2013;2013:654643.


    Google Scholar
     

  • Chen J, Ma D, Bao J, Zhang Y, Deng G. Roots of Astragalus propinquus Schischkin regulate transmembrane iron transport and ferroptosis to improve cerebral ischemia-reperfusion injury. Evid Based Complement Alternat Med. 2022;2022:7410865.


    Google Scholar
     

  • Zhao Y, Zhang R, Jiang KW, Qi J, Hu Y, Guo J, Zhu R, Zhang T, Egan AN, Yi TS, et al. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in fabaceae. Mol Plant. 2021;14(5):748–73.


    Google Scholar
     

  • Wojciechowski MF, Lavin M, Sanderson MJ. A phylogeny of legumes (Leguminosae) based on analysis of the plastid MatK gene resolves many well-supported subclades within the family. Am J Bot. 2004;91(11):1846–62.


    Google Scholar
     

  • Castillon EE, Quintanilla JAV, Delgado-Salinas A, Rebman JP. The genus Astragalus (Leguminosae: Papilionoideae: Galegeae) in Mexico. Phytotaxa. 2023;586(1):1–162.


    Google Scholar
     

  • Liu J, Zhang X, Sheng J. Integrative analysis of the transcriptome and metabolome reveals the mechanism of saline–alkali stress tolerance in astragalus Membranaceus (Fisch) Bge. var. Mongholicus (Bge.) Hsiao. J Food Qual Saf. 2022;6:fyac001.


    Google Scholar
     

  • Li L, Zheng S, Yang Q, Chen S, Huang L. Distinguishing Astragalus mongholicus and its planting soil samples from different regions by ICP-AES. Molecules. 2016;21(4):482.


    Google Scholar
     

  • Aslam B, Khurshid M, Arshad MI, Muzammil S, Rasool M, Yasmeen N, Shah T, Chaudhry TH, Rasool MH, Shahid A, et al. Antibiotic resistance: one health one world outlook. Front Cell Infect Microbiol. 2021;11:771510.


    Google Scholar
     

  • Maassoumi N, Ghanati F, Zare-Maivan H, Gavlighi HA. Metabolic changes network in selenium-treated Astragalus cells derived by glutathione as a core component. Plant Cell Tissue Organ Cult (PCTOC). 2022;149(1):455–65.


    Google Scholar
     

  • Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J, et al. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnol Adv. 2020;38:107316.


    Google Scholar
     

  • Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel). 2018. https://doi.org/10.3390/medicines5030093.


    Google Scholar
     

  • Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, Bartlett J, Shanmugam K, Münch G, Wu MJ. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J Agric Food Chem. 2011;59(23):12361–7.


    Google Scholar
     

  • Bratkov VM, Shkondrov AM, Zdraveva PK, Krasteva IN. Flavonoids from the genus astragalus: phytochemistry and biological activity. Pharmacogn Rev. 2016;10(19):11–32.


    Google Scholar
     

  • Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963.


    Google Scholar
     

  • Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Current protocols in bioinformatics. 2009, Chap. 4:4.10.11–14.10.14.

  • Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117(17):9451–7.


    Google Scholar
     

  • Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.


    Google Scholar
     

  • Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31.


    Google Scholar
     

  • Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinf (Oxford England). 2008;24(5):637–44.


    Google Scholar
     

  • Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinf (Oxford England). 2007;23(6):673–9.


    Google Scholar
     

  • Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20(1):278.


    Google Scholar
     

  • Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491.


    Google Scholar
     

  • Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004;32(Database issue):D115–119.


    Google Scholar
     

  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.


    Google Scholar
     

  • Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18(4):366–8.


    Google Scholar
     

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.


    Google Scholar
     

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.


    Google Scholar
     

  • Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.


    Google Scholar
     

  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.


    Google Scholar
     

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinf (Oxford England). 2009;25(15):1972–3.


    Google Scholar
     

  • Yang N. Construction of a comparative genomic map of Cotton’s multigenomes and functional evolution analysis. North China University of Science and Technology; 2017.

  • Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238.


    Google Scholar
     

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–9.


    Google Scholar
     

  • Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov (Cambridge (Mass). 2021;2(3):100141.


    Google Scholar
     

  • Mendes FK, Vanderpool D, Fulton B, Hahn MW. CAFE 5 models variation in evolutionary rates among gene families. Bioinf (Oxford England). 2021;36(22–23):5516–8.


    Google Scholar
     

  • Su X, Yang L, Wang D, Shu Z, Yang Y, Chen S, Song C. 1 K medicinal plant genome database: an integrated database combining genomes and metabolites of medicinal plants. Hortic Res. 2022;9:uhac075.


    Google Scholar
     

  • Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 2019;47(W1):W5–10.


    Google Scholar
     

  • Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34(Web Server issue):W609–612.


    Google Scholar
     

  • Nützmann HW, Osbourn A. Gene clustering in plant specialized metabolism. Curr Opin Biotechnol. 2014;26:91–9.


    Google Scholar
     

  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinf (Oxford England). 2014;30(9):1312–3.


    Google Scholar
     

  • Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, et al. The flavonoid biosynthesis network in plants. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222312824.


    Google Scholar
     

  • Liu Y, Wang B, Shu S, Li Z, Song C, Liu D, et al. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nat Commun. 2021;12(1):3276.


    Google Scholar
     

  • Cui X, Meng F, Pan X, Qiu X, Zhang S, Li C, et al. Chromosome-level genome assembly of Aristolochia contorta provides insights into the biosynthesis of benzylisoquinoline alkaloids and aristolochic acids. Hortic Res. 2022. https://doi.org/10.1093/hr/uhac005.


    Google Scholar
     

  • Zhang Q, Li M, Chen X, Liu G, Zhang Z, Tan Q, Hu Y, Fan Y, Liu Y, Zhu T, et al. Chromosome-Level genome assembly of bupleurum Chinense DC provides insights into the Saikosaponin biosynthesis. Front Genet. 2022;13:878431.


    Google Scholar
     

  • Pu X, Li Z, Tian Y, Gao R, Hao L, Hu Y, He C, Sun W, Xu M, Peters RJ, et al. The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. New Phytol. 2020;227(3):930–43.


    Google Scholar
     

  • Xiong X, Gou J, Liao Q, Li Y, Zhou Q, Bi G, et al. The taxus genome provides insights into Paclitaxel biosynthesis. Nat Plants. 2021;7(8):1026–36.


    Google Scholar
     

  • Egan AN, Vatanparast M. Advances in legume research in the genomics era. Aust Syst Bot. 2019;32(6):459–83.


    Google Scholar
     

  • Panchy N, Lehti-Shiu M, Shiu SH. Evolution of gene duplication in plants. Plant Physiol. 2016;171(4):2294–316.


    Google Scholar
     

  • Ren R, Wang H, Guo C, Zhang N, Zeng L, Chen Y, Ma H, Qi J. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant. 2018;11(3):414–28.


    Google Scholar
     

  • Wang JP, Yu JG, Li J, Sun PC, Wang L, Yuan JQ, et al. Two likely auto-tetraploidization events shaped kiwifruit genome and contributed to establishment of the Actinidiaceae family. iScience. 2018;7:230–40.


    Google Scholar
     

  • Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531.


    Google Scholar
     

  • Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Future J Pharm Sci. 2021;7(1):25.


    Google Scholar
     

  • Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, et al. Important flavonoids and their role as a therapeutic agent. Molecules (Basel). 2020. https://doi.org/10.3390/molecules25225243.


    Google Scholar
     

  • Kozłowska A, Szostak-Węgierek D. Targeting cardiovascular diseases by flavonols: an update. Nutrients. 2022. https://doi.org/10.3390/nu14071439.


    Google Scholar
     

  • Gangopadhyay A, Chakraborty S, Jash SK, Gorai D. Cytotoxicity of natural flavones and flavonols against different cancer cells. J Iran Chem Soc. 2022;19(5):1547–73.


    Google Scholar
     

  • Jiang P, Sheng Y, Ji L. The age-related change of glutathione antioxidant system in mice liver. Toxicol Mech Methods. 2013;23(6):396–401.


    Google Scholar
     

  • Di S, Yan F, Rodas FR, Rodriguez TO, Murai Y, Iwashina T, Sugawara S, Mori T, Nakabayashi R, Yonekura-Sakakibara K, et al. Linkage mapping, molecular cloning and functional analysis of soybean gene Fg3 encoding flavonol 3-O-glucoside/galactoside (1 → 2) glucosyltransferase. BMC Plant Biol. 2015;15(1):126.


    Google Scholar
     

  • Akashi T, Koshimizu S, Aoki T, Ayabe S. Identification of cDNAs encoding Pterocarpan reductase involved in Isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett. 2006;580(24):5666–70.


    Google Scholar
     

  • F Y. Effects of promoting osteogenic differentiation of rBMSCs and robs using five kinds of flavonoids from hedysari radix. Chin Traditional Herb Drugs. 2019;19(24):632–8.


    Google Scholar
     

  • WJ M, Z. The role of glutathione in plant stress resistance. Guangxi Bot Sci. 2005;6:570–5.


    Google Scholar
     

  • Xie Y, He X, Wang D, Wang M, Li W, Chen W, et al. Characterization of dark septate endophytes under drought and rehydration and their compensatory mechanisms in Astragalus membranaceus. Microorganisms. 2024;12(11):2254.


    Google Scholar
     

  • Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep. 2017;36(6):791–805.


    Google Scholar
     

  • Bilang J, Sturm A. Cloning and characterization of a glutathione S-transferase that can be photolabeled with 5-azido-indole-3-acetic acid. Plant Physiol. 1995;109(1):253–60.


    Google Scholar
     

  • Loyall L, Uchida K, Braun S, Furuya M, Frohnmeyer H. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell. 2000;12(10):1939–50.


    Google Scholar
     

  • Kampranis SC, Damianova R, Atallah M, Toby G, Kondi G, Tsichlis PN, Makris AM. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J Biol Chem. 2000;275(38):29207–16.


    Google Scholar
     

  • Zhang Y, Zhang F, Wang L, Wei K, Cheng HJPPJ. Plant glutathione S-transferases: roles in flavonoid accumulation. 2015; 51(11):1815–20.