• Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).

    Article 

    Google Scholar
     

  • Bálint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Seeber, P. A. & Epp, L. S. Environmental DNA and metagenomics of terrestrial mammals as keystone taxa of recent and past ecosystems. Mamm. Rev. 52, 538–553 (2022).

    Article 

    Google Scholar
     

  • Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. 11, 254 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Heyde, M., Bunce, M. & Nevill, P. Key factors to consider in the use of environmental DNA metabarcoding to monitor terrestrial ecological restoration. Sci. Total Environ. 848, 157617 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Clare, E. L. et al. Measuring biodiversity from DNA in the air. Curr. Biol. 32, 693–700 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynggaard, C. et al. Airborne environmental DNA for terrestrial vertebrate community monitoring. Curr. Biol. 32, 701–707 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Littlefair, J. E. et al. Air-quality networks collect environmental DNA with the potential to measure biodiversity at continental scales. Curr. Biol. 33, R426–R428 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Després, V. R. et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 64, 15598 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Šantl-Temkiv, T., Amato, P., Casamayor, E. O., Lee, P. K. H. & Pointing, S. B. Microbial ecology of the atmosphere. FEMS Microbiol. Rev. 46, fuac009 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fröhlich-Nowoisky, J. et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376 (2016).

    Article 

    Google Scholar
     

  • Métris, K. L. & Métris, J. Aircraft surveys for air eDNA: probing biodiversity in the sky. PeerJ. 11, e15171 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson, E. et al. Airborne microbial biodiversity and seasonality in Northern and Southern Sweden. PeerJ. 8, e8424 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowers, R. M. et al. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ. Sci. Technol. 47, 12097–12106 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5, 601–612 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, M. D., Cox, R. D., Grisham, B. A., Lucia, D. & Barnes, M. A. Airborne eDNA reflects human activity and seasonal changes on a landscape scale. Front. Environ. Sci. 8, 563431 (2021).

    Article 

    Google Scholar
     

  • Johnson, M. D., Barnes, M. A., Garrett, N. R. & Clare, E. L. Answers blowing in the wind: Detection of birds, mammals, and amphibians with airborne environmental DNA in a natural environment over a yearlong survey. Environ. DNA 5, 375–387 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lynggaard, C., Frøslev, T. G., Johnson, M. S., Olsen, M. T. & Bohmann, K. Airborne environmental DNA captures terrestrial vertebrate diversity in nature. Mol. Ecol. Resour. 24, e13840 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roger, F. et al. Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—A proof of concept from the field. Environ. DNA 4, 790–807 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pumkaeo, P., Takahashi, J. & Iwahashi, H. Detection and monitoring of insect traces in bioaerosols. PeerJ. 9, https://doi.org/10.7717/peerj.10862 (2021).

  • Polling, M., Buij, R., Laros, I. & de Groot, G. A. Continuous daily sampling of airborne eDNA detects all vertebrate species identified by camera traps. Environ. DNA 6, e591 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Helin, A. et al. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: Seasonal patterns, abundances and size distributions. Atmos. Chem. Phys. 17, 13089–13101 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez, A. et al. Avoiding pandemic fears in the subway and conquering the platypus. mSystems 1, e00050–16 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. Metagenome analysis using the Kraken software suite. Nat. Protoc. 17, 2815–2839 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794 (2016).

  • GBIF.org GBIF Occurrence Download https://doi.org/10.15468/dl.cjxesu (2020).

  • Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).

    Article 

    Google Scholar
     

  • Yates, M. C. et al. The relationship between eDNA particle concentration and organism abundance in nature is strengthened by allometric scaling. Mol. Ecol. 30, 3068–3082 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fediajevaite, J., Priestley, V., Arnold, R. & Savolainen, V. Meta-analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecol. Evol. 11, 4803–4815 (2021).

  • Harrison, J. B., Sunday, J. M. & Rogers, S. M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B Biol. Sci. 286, 20191409 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Valentin, R. E. et al. Moving eDNA surveys onto land: Strategies for active eDNA aggregation to detect invasive forest insects. Mol. Ecol. Resour. 20, 746–755 (2020).

    Article 

    Google Scholar
     

  • Kirtane, A., Kleyer, H. & Deiner, K. Sorting states of environmental DNA: Effects of isolation method and water matrix on the recovery of membrane-bound, dissolved, and adsorbed states of eDNA. Environ. DNA 5, 582–596 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Manninen, H. E. et al. Patterns in airborne pollen and other primary biological aerosol particles (PBAP), and their contribution to aerosol mass and number in a boreal forest. Boreal Environ. Res. 19, 383–405 (2014).


    Google Scholar
     

  • li, S. & Georgopoulos, P. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmos. Environ. 45, 2260–2276 (2011).

    Article 

    Google Scholar
     

  • Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E. & Ovaskainen, O. Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J. Ecol. 101, 701–712 (2013).

  • Woo, C., An, C., Xu, S., Yi, S. M. & Yamamoto, N. Taxonomic diversity of fungi deposited from the atmosphere. ISME J. 12, 2051–2060 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clauß, M. Particle size distribution of airborne micro-organisms in the environment-A review. Landbauforschung Volkenrode 65, 77–100 (2015).


    Google Scholar
     

  • Ruiz-Jimenez, J. et al. Determination of free amino acids, saccharides, and selected microbes in biogenic atmospheric aerosols – Seasonal variations, particle size distribution, chemical and microbial relations. Atmos. Chem. Phys. 21, 8775–8790 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brook, J. R., Johnson, D. & Mamedov, A. Determination of the source areas contributing to regionally high warm season PM2.5 in eastern north america. J. Air Waste Manage Assoc. 54, 1162–1169 (2004).

    Article 

    Google Scholar
     

  • Zhou, L., Hopke, P. K. & Liu, W. Comparison of two trajectory based models for locating particle sources for two rural New York sites. Atmos. Environ. 38, 1955–1963 (2004).

  • Hopke, P. K. Review of receptor modeling methods for source apportionment. J. Air Waste Manage Assoc. 66, 237–259 (2016).

    Article 

    Google Scholar
     

  • Belis, C. et al. European Guide on Air Pollution Apportionment with Receptor Models. (2019).

  • Lavsund, S., Nygrén, T. & Solberg, E. J. Status of moose populations and challenges to moose management in Fennoscandia. Alces 39, 109–130 (2003).


    Google Scholar
     

  • Singh, N. J., Börger, L., Dettki, H., Bunnefeld, N. & Ericsson, G. From migration to nomadism: Movement variability in a northern ungulate across its latitudinal range. Ecol. Appl. 22, 2007–2020 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Watson, J. G., Chen, L. W. A., Chow, J. C., Doraiswamy, P. & Lowenthal, D. H. Source apportionment: Findings from the U.S. supersites program. J Air Waste Manage Assoc. 58, 265–288 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Blackman, R. et al. Environmental DNA: The next chapter. Mol. Ecol. 33, e17355 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roche, K. E. & Mukherjee, S. The accuracy of absolute differential abundance analysis from relative count data. PLoS Comput. Biol. 18, e1010284 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinn, T. P., Richardson, M. F., Lovell, D. & Crowley, T. M. Propr: An R-package for identifying proportionally abundant features using compositional data analysis. Sci. Rep. 7, 16252 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, J. C. et al. Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. Soil Biol. Biochem. 125, 197–209 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bowers, R. M. et al. Sources of bacteria in outdoor air across cities in the midwestern United States. Appl. Environ. Microbiol. 77, 6350–6356 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Merwe, M., Ericson, L., Walker, J., Thrall, P. H. & Burdon, J. J. Evolutionary relationships among species of Puccinia and Uromyces (Pucciniaceae, Uredinales) inferred from partial protein coding gene phylogenies. Mycol Res. 111, 163–175 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Terhonen, E., Blumenstein, K., Kovalchuk, A. & Asiegbu, F. O. Forest tree microbiomes and associated fungal endophytes: Functional roles and impact on forest health. Forests 10, 42 (2019).

    Article 

    Google Scholar
     

  • Ren, F. et al. Tissue microbiome of Norway spruce affected by heterobasidion-induced wood decay. Microb. Ecol. 77, 640–650 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross, A. A., Müller, K. M., Scott Weese, J. & Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl. Acad. Sci. USA 115, E5786–E5795 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiśniewska, K., Lewandowska, A. U. & Śliwińska-Wilczewska, S. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment – Review study. Environ. Int. 131, 104964 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Reeve, R. et al. How to partition diversity. Preprint at https://doi.org/10.48550/arXiv.1404.6520 (2016).

  • Leinster, T. Entropy and Diversity: The Axiomatic Approach. (Cambridge University Press, Cambridge, 2021).

  • Hill, M. O. Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Article 

    Google Scholar
     

  • Sax, D. F. & Gaines, S. D. Species diversity: From global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).

    Article 

    Google Scholar
     

  • Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: Toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).

    Article 

    Google Scholar
     

  • Ylisirniö, A. L. et al. Dead wood and polypore diversity in natural post-fire succession forests and managed stands – Lessons for biodiversity management in boreal forests. For. Ecol. Manage 286, 16–27 (2012).

    Article 

    Google Scholar
     

  • Uboni, A., Blochel, A., Kodnik, D. & Moen, J. Modelling occurrence and status of mat-forming lichens in boreal forests to assess the past and current quality of reindeer winter pastures. Ecol. Indic. 96, 99–106 (2019).

    Article 

    Google Scholar
     

  • Jonsson, B. G. et al. Rapid changes in ground vegetation of mature boreal forests—an analysis of Swedish national forest inventory data. Forests 12, 475 (2021).

    Article 

    Google Scholar
     

  • SLU Artdatabanken. Rödlistade Arter i Sverige 2020. (SLU, Uppsala, 2020).

  • Sandström, J. et al. Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. J. Appl. Ecol. 56, 1770–1781 (2019).

    Article 

    Google Scholar
     

  • Bergstedt, J., Hagner, M. & Milberg, P. Effects on vegetation composition of a modified forest harvesting and propagation method compared with clear-cutting, scarification and planting. Appl. Veg. Sci. 11, 159–168 (2008).

    Article 

    Google Scholar
     

  • Edman, M., Gustafsson, M., Stenlid, J., Jonsson, B. G. & Ericson, L. Spore deposition of wood-decaying fungi: Importance of landscape composition. Ecography 27, 103–111 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Siitonen, P., Lehtinen, A. & Siitonen, M. Effects of forest edges on the distribution, abundance, and regional persistence of wood-rotting fungi. Conserv. Biol. 19, 250–260 (2005).

    Article 

    Google Scholar
     

  • Lewin, H. A. et al. Earth BioGenome project: sequencing life for the future of life. Proc. Natl. Acad. Sci. USA 115, 4325–4333 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masson, O. et al. Airborne concentrations and chemical considerations of radioactive ruthenium from an undeclared major nuclear release in 2017. Proc. Natl. Acad. Sci. USA 116, 16750–16759 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Annu. Rep. 2022. (2023).

  • Söderström, C., Ban, S., Jansson, P., Lindh, K. & Tooloutalaie, N. Radionuclides in Ground Level Air in Sweden Year 2006. (2007).

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110, 15758–15763 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Bushnell, B.BBMap Short Read Aligner. Joint Genome Institute, Department of Energy (2014).

  • Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 1–13 (2019).

    Article 

    Google Scholar
     

  • Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Modelling 15, 134–158 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Palarea-Albaladejo, J. & Martín-Fernández, J. A. zCompositions — R package for multivariate imputation of left-censored data under a compositional approach. Chemometr. Intell. Lab. Syst. 143, 85–96 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. InProceedings of the 9th Python in Science Conference 92–96 (2010).

  • van den Boogaart, K. G. & Tolosana-Delgado, R. ‘compositions’: A unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Oksanen, J. et al. vegan: Community Ecology Package. R package at https://CRAN.R-project.org/package=vegan (2020).

  • GBIF.org GBIF Occurrence Download https://doi.org/10.15468/dl.xnyctg. (2020).

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article 

    Google Scholar
     

  • Lindqvist, J. En Stokastisk Partikelmodell i Ett Icke-Metriskt Koordinatsystem. FOI-R–99-01086-862-SE, Swedish Defence Research Agency (1999).

  • Muñoz-Sabater, J. ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac (Accessed September 2019) (2019).

  • Canty, A. & Ripley, B. boot: Bootstrap Functions (Originally by Angelo Canty for S). R package at https://cran.r-project.org/package=boot (2022).

  • Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application. Bootstrap Methods and their Application (Cambridge University Press, Cambridge, 1997).

  • Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Carslaw, D. C. & Ropkins, K. Openair – An r package for air quality data analysis. Environ. Model. Softw. 27, 52–61 (2012).

    Article 

    Google Scholar
     

  • Scott, S. L. & Varian, H. R. Predicting the present with Bayesian structural time series. Int. J. Math. Model. Num. Optimis. 5, 4–23 (2014).


    Google Scholar
     

  • Scott, S. L. bsts: Bayesian Structural Time Series. R package at https://CRAN.R-project.org/package=bsts (2022).

  • Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bürkner, P. C., Gabry, J. & Vehtari, A. Approximate leave-future-out cross-validation for Bayesian time series models. J. Stat. Comput. Simul. 90, 2499–2523 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Durbin, J. & Koopman, S. J. Time Series Analysis by State Space Methods. Time Series Analysis by State Space Methods (Oxford University Press, Oxford, 2012).

  • Commandeur, J. J. F. & Koopman, S. J. An Introduction to State Space Time Series Analysis. (Oxford University Press, Incorporated, 2007).

  • Geweke, J. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments. in Bayesian Statistics (eds. Bernardo, J. M., Berger, O., Dawid, A. P. & Smith, A. F. M.) vol. 4 169–193 (Clarendon Press, Oxford, 1992).

  • Raftery, A. E. & Lewis, S. M. Comment: One long run with diagnostics: Implementation strategies for markov chain monte carlo. Stat. Sci. 7, 493–497 (1992).

    Article 

    Google Scholar
     

  • Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News 6, 7–11 (2006).


    Google Scholar
     

  • GBIF.org. GBIF Occurrence Download https://doi.org/10.15468/dl.k76kgd (2021).

  • Holmes, E. E., Ward, E. J. & Wills, K. MARSS: Multivariate autoregressive state-space models for analyzing time-series data. R J 4, 11–19 (2012).

    Article 

    Google Scholar
     

  • Holmes, E. E., Scheuerell, M. D. & Ward, E. J. Detecting a signal from noisy sensors. in Applied Time Series Analysis for Fisheries and Environmental Data. (2021).