Arana, M. V., Tognacca, R. S., Estravis-Barcalá, M., Sánchez, R. A. & Botto, J. F. Physiological and molecular mechanisms underlying the integration of light and temperature Cues in Arabidopsis Thaliana Seeds. Plant Cell Environ. 12, 3113–3121 (2017).
Blanchard, M. G. & Runkle, E. S. Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. J. Exp. Bot. 57, 4043–4049 (2006).
Cao, S. et al. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. N. Phytol. 230, 1731–1745 (2021).
Bendix, C., Marshall, C. M. & Harmon, F. G. Circadian clock genes universally control key agricultural traits. Mol. Plant 8, 1135–1152 (2015).
Blair, E. J. et al. Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci. Rep. 9, 4814 (2019).
Covington, M. F., Maloof, J. N., Straume, M., Kay, S. A. & Harmer, S. L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 9, R130 (2008).
Vialet-Chabrand, S. R., Matthews, J. S., Simkin, A., Raines, C. A. & Lawson, T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 173, 2163–2179 (2017).
Kami, C., Lorrain, S., Hornitschek, P. & Fankhauser, C. in Current Topics in Developmental Biology(Academic Press, 2010).
Hayes, S., Schachtschabel, J., Mishkind, M., Munnik, T. & Arisz, S. A. Hot topic: Thermosensing in plants. Plant Cell Environ. 44, 2018–2033 (2021).
Penfield, S. Temperature perception and signal transduction in plants. N. Phytol. 179, 615–628 (2008).
Jung, H.-S. et al. Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc. Natl. Acad. Sci. USA 110, 14474–14479 (2013).
Jung, J.-H. et al. Phytochromes function as thermosensors in Arabidopsis. Science 354, 886–889 (2016).
Legris, M. et al. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897–900 (2016).
Okajima, K., Kashojiya, S. & Tokutomi, S. Photosensitivity of kinase activation by blue light involves the lifetime of a cysteinyl-flavin adduct intermediate, S390, in the photoreaction cycle of the LOV2 domain in phototropin, a plant blue light receptor. J. Biol. Chem. 287, 40972–40981 (2012).
Kumar, S. V. & Wigge, P. A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136–147 (2010).
Christie, J. M. Phototropin Blue-Light receptors. Annu. Rev. Plant Biol. 58, 21–45 (2007).
Aihara, Y., Tabata, R., Suzuki, T., Shimazaki, K. & Nagatani, A. Molecular basis of the functional specificities of phototropin 1 and 2. Plant J. 56, 364–375 (2008).
Jarillo, J. A. et al. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410, 952–954 (2001).
Kagawa, T. et al. Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138–2141 (2001).
Sakai, T. et al. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl Acad. Sci. USA 98, 6969–6974 (2001).
Kinoshita, T. et al. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656–660 (2001).
Christie, J., Suetsugu, N., Sullivan, S. & Wada, M. Shining light on the function of NPH3/RPT2-like proteins in phototropin signalling. Plant Physiol. 176, 1015–1024 (2017).
Bas-Orth, C., Tan, Y.-W., Oliveira, A. M. M., Bengtson, C. P. & Bading, H. The calmodulin-binding transcription activator CAMTA1 is required for long-term memory formation in mice. Learn. Mem. 23, 313–321 (2016).
Doherty, C. J., Van Buskirk, H. A., Myers, S. J. & Thomashow, M. F. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing Tolerance. Plant Cell 21, 972–984 (2009).
Kim, Y. S. et al. CAMTA-Mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection[OPEN]. Plant Cell 29, 2465–2477 (2017).
Zhang, L., Du, L., Shen, C., Yang, Y. & Poovaiah, B. W. Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+–calmodulin–AtSR1/CAMTA3 signaling. Plant J. 78, 269–281 (2014).
Long, C. et al. Ataxia and Purkinje cell degeneration in mice lacking the CAMTA1 transcription factor. Proc. Natl Acad. Sci. USA 111, 11521–11526 (2014).
Song, K. et al. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 125, 453–466 (2006).
Kim, Y., Park, S., Gilmour, S. J. & Thomashow, M. F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J. 75, 364–376 (2013).
Jiang, X., Hoehenwarter, W., Scheel, D. & Lee, J. Phosphorylation of the CAMTA3 transcription factor triggers its destabilization and nuclear export. Plant Physiol. 184, 1056–1071 (2020).
Chao, L., Kim, Y., Gilmour, S. J. & Thomashow, M. F. Temperature modulation of CAMTA3 gene induction activity is mediated through the DNA binding domain. Plant J. 112, 235–248 (2022).
Jung, J.-H. et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585, 256–260 (2020).
Strasser, B., Alvarez, M. J., Califano, A. & Cerdán, P. D. A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature. Plant J. 58, 629–640 (2009).
Susila, H. et al. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science 373, 1137–1142 (2021).
Benn, G. et al. A key general stress response motif is regulated non-uniformly by CAMTA transcription factors. Plant J. Cell Mol. Biol. 80, 82–92 (2014).
Mockler, T. C. et al. The diurnal project: Diurnal and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb. Symp. Quant. Biol. 72, 353–363 (2007).
O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).
Kidokoro, S. et al. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell 29, 760–774 (2017).
Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).
Liu, C. et al. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135, 1481–1491 (2008).
Urrea Castellanos, R. et al. FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. Plant J. 104, 7–17 (2020).
Jeon, J., Cho, C., Lee, M. R., Van Binh, N. & Kim, J. CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 Regulate lateral root development in response to cold stress in arabidopsis. Plant Cell 28, 1828–1843 (2016).
Šimášková, M. et al. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat. Commun. 6, 8717 (2015).
Shao, J., Liu, X., Wang, R., Zhang, G. & Yu, F. The Over-Expression of an arabidopsis B3 transcription factor, ABS2/NGAL1, leads to the loss of flower petals. PLOS ONE 7, e49861 (2012).
Shang, J.-Y. et al. COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis. Plant Cell 33, 3250–3271 (2021).
Kardailsky, I. et al. Activation tagging of the floral inducer FT. Science 286, 1962–1965 (1999).
Corbesier, L. et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030–1033 (2007).
Wickland, D. P. & Hanzawa, Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene family: Functional evolution and molecular mechanisms. Mol. Plant 8, 983–997 (2015).
Li, Z. et al. Safflower CtFT genes orchestrating flowering time and flavonoid biosynthesis. BMC Plant Biol. 24, 1232 (2024).
Buer, C. S., Imin, N. & Djordjevic, M. A. Flavonoids: New roles for old molecules. J. Integr. Plant Biol. 52, 98–111 (2010).
Schulz, E., Tohge, T., Zuther, E., Fernie, A. R. & Hincha, D. K. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci. Rep. 6, 34027 (2016).
Knauer, T., Dümmer, M., Landgraf, F. & Forreiter, C. A Negative effector of blue light-induced and gravitropic bending in arabidopsis. Plant Physiol. 156, 439–447 (2011).
Imaizumi, T., Schultz, T. F., Harmon, F. G., Ho, L. A. & Kay, S. A. FKF1 F-Box Protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309, 293–297 (2005).
Imaizumi, T., Tran, H. G., Swartz, T. E., Briggs, W. R. & Kay, S. A. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302–306 (2003).
Baudry, A. et al. F-Box proteins FKF1 and LKP2 Act in concert with ZEITLUPE to control Arabidopsis clock progression[C][W]. Plant Cell 22, 606–622 (2010).
Takase, T. et al. LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J. 67, 608–621 (2011).
Zhao, Z. et al. CRY2 interacts with CIS1 to regulate thermosensory flowering via FLM alternative splicing. Nat. Commun. 13, 7045 (2022).
Halliday, K. J., Salter, M. G., Thingnaes, E. & Whitelam, G. C. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J. 33, 875–885 (2003).
Halliday, K. J. & Whitelam, G. C. Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiol. 131, 1913–1920 (2003).
Burko, Y. et al. PIF7 is a master regulator of thermomorphogenesis in shade. Nat. Commun. 13, 4942 (2022).
Mehta, D. et al. Twilight length alters growth and flowering time in Arabidopsis via LHY/CCA1. Sci. Adv. 10, eadl3199 (2024).
Sullivan, S. et al. Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding. Nat. Commun. 12, 6129 (2021).
Pedmale, U. V. & Liscum, E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting orotein NPH3*. J. Biol. Chem. 282, 19992–20001 (2007).
Haga, K., Mayama, T., yamada, M. & Sakai, T. Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to high-intensity light in phototropic responses | Plant Cell 4, 1098–1112 (2015).
Motchoulski, A. & Liscum, E. Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961–964 (1999).
Reuter, L. et al. Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism. Nat. Commun. 12, 6128 (2021).
Zhao, X. et al. Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana. J. Integr. Plant Biol. 60, 562–577 (2018).
Roberts, D. et al. Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-ring E3 ubiquitin ligase CRL3NPH3[W]. Plant Cell 23, 3627–3640 (2011).
Suetsugu, N. & Wada, M. Two coiled-coil proteins, WEB1 and PMI2, suppress the signaling pathway of chloroplast accumulation response that is mediated by two phototropin-interacting proteins, RPT2 and NCH1, in seed plants. Int. J. Mol. Sci. 18, 1469 (2017).
Suetsugu, N. et al. RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proc. Natl. Acad. Sci. USA 113, 10424–10429 (2016).
Bouché, N., Scharlat, A., Snedden, W., Bouchez, D. & Fromm, H. A novel family of Calmodulin-binding transcription activators in multicellular organisms. J. Biol. Chem. 277, 21851–21861 (2002).
Tähtiharju, S., Sangwan, V., Monroy, A. F., Dhindsa, R. S. & Borg, M. The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta 203, 442–447 (1997).
Yang, L. et al. Potato NPH3/RPT2-like protein StNRL1, targeted by a phytophthora infestans RXLR effector, is a susceptibility factor1[OPEN]. Plant Physiol. 171, 645–657 (2016).
Naqvi, S. et al. Blue-light receptor phototropin 1 suppresses immunity to promote Phytophthora infestans infection. New Phytol. 233, 2282–2293 (2022).
Khan, I. et al. Calcium-promoted interaction between the C2-domain protein EHB1 and metal transporter IRT1 inhibits arabidopsis iron acquisition. Plant Physiol. 180, 1564–1581 (2019).
Stoelzle, S., Kagawa, T., Wada, M., Hedrich, R. & Dietrich, P. Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc. Natl Acad. Sci. USA 100, 1456–1461 (2003).
Harada, A., Sakai, T. & Okada, K. phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc. Natl. Acad. Sci. USA 100, 8583–8588 (2003).
Łabuz, J. et al. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study. J. Exp. Bot. 67, 3953–3964 (2016).
Lehmann, P. et al. Transitions of gene expression induced by short-term blue light. Plant Biol. 13, 349–361 (2011).
Sablowski, R. & Carnier Dornelas, M. Interplay between cell growth and cell cycle in plants. J. Exp. Bot. 65, 2703–2714 (2014).
Lee, H. O., Davidson, J. M. & Duronio, R. J. Endoreplication: polyploidy with purpose. Genes Dev. 23, 2461–2477 (2009).
Huala, E. et al. Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science 278, 2120–2123 (1997).
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
Li, C., Deans, N. C. & Buell, C. R. Simple Tidy GeneCoEx”: A gene co-expression analysis workflow powered by tidyverse and graph-based clustering in R. Plant Genome 16, e20323 (2023).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. 1695, http://igraph.org (2006).
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2008).
Sherman, B. T. et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50, W216–W221 (2022).
Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A. & Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2393 (2000).