• Arana, M. V., Tognacca, R. S., Estravis-Barcalá, M., Sánchez, R. A. & Botto, J. F. Physiological and molecular mechanisms underlying the integration of light and temperature Cues in Arabidopsis Thaliana Seeds. Plant Cell Environ. 12, 3113–3121 (2017).

  • Blanchard, M. G. & Runkle, E. S. Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. J. Exp. Bot. 57, 4043–4049 (2006).


    Google Scholar
     

  • Cao, S. et al. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. N. Phytol. 230, 1731–1745 (2021).


    Google Scholar
     

  • Bendix, C., Marshall, C. M. & Harmon, F. G. Circadian clock genes universally control key agricultural traits. Mol. Plant 8, 1135–1152 (2015).

  • Blair, E. J. et al. Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci. Rep. 9, 4814 (2019).


    Google Scholar
     

  • Covington, M. F., Maloof, J. N., Straume, M., Kay, S. A. & Harmer, S. L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 9, R130 (2008).


    Google Scholar
     

  • Vialet-Chabrand, S. R., Matthews, J. S., Simkin, A., Raines, C. A. & Lawson, T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 173, 2163–2179 (2017).

  • Kami, C., Lorrain, S., Hornitschek, P. & Fankhauser, C. in Current Topics in Developmental Biology(Academic Press, 2010).

  • Hayes, S., Schachtschabel, J., Mishkind, M., Munnik, T. & Arisz, S. A. Hot topic: Thermosensing in plants. Plant Cell Environ. 44, 2018–2033 (2021).


    Google Scholar
     

  • Penfield, S. Temperature perception and signal transduction in plants. N. Phytol. 179, 615–628 (2008).


    Google Scholar
     

  • Jung, H.-S. et al. Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc. Natl. Acad. Sci. USA 110, 14474–14479 (2013).


    Google Scholar
     

  • Jung, J.-H. et al. Phytochromes function as thermosensors in Arabidopsis. Science 354, 886–889 (2016).

  • Legris, M. et al. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897–900 (2016).

  • Okajima, K., Kashojiya, S. & Tokutomi, S. Photosensitivity of kinase activation by blue light involves the lifetime of a cysteinyl-flavin adduct intermediate, S390, in the photoreaction cycle of the LOV2 domain in phototropin, a plant blue light receptor. J. Biol. Chem. 287, 40972–40981 (2012).


    Google Scholar
     

  • Kumar, S. V. & Wigge, P. A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136–147 (2010).


    Google Scholar
     

  • Christie, J. M. Phototropin Blue-Light receptors. Annu. Rev. Plant Biol. 58, 21–45 (2007).


    Google Scholar
     

  • Aihara, Y., Tabata, R., Suzuki, T., Shimazaki, K. & Nagatani, A. Molecular basis of the functional specificities of phototropin 1 and 2. Plant J. 56, 364–375 (2008).


    Google Scholar
     

  • Jarillo, J. A. et al. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410, 952–954 (2001).


    Google Scholar
     

  • Kagawa, T. et al. Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138–2141 (2001).


    Google Scholar
     

  • Sakai, T. et al. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl Acad. Sci. USA 98, 6969–6974 (2001).


    Google Scholar
     

  • Kinoshita, T. et al. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656–660 (2001).


    Google Scholar
     

  • Christie, J., Suetsugu, N., Sullivan, S. & Wada, M. Shining light on the function of NPH3/RPT2-like proteins in phototropin signalling. Plant Physiol. 176, 1015–1024 (2017).

  • Bas-Orth, C., Tan, Y.-W., Oliveira, A. M. M., Bengtson, C. P. & Bading, H. The calmodulin-binding transcription activator CAMTA1 is required for long-term memory formation in mice. Learn. Mem. 23, 313–321 (2016).


    Google Scholar
     

  • Doherty, C. J., Van Buskirk, H. A., Myers, S. J. & Thomashow, M. F. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing Tolerance. Plant Cell 21, 972–984 (2009).


    Google Scholar
     

  • Kim, Y. S. et al. CAMTA-Mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection[OPEN]. Plant Cell 29, 2465–2477 (2017).


    Google Scholar
     

  • Zhang, L., Du, L., Shen, C., Yang, Y. & Poovaiah, B. W. Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+–calmodulin–AtSR1/CAMTA3 signaling. Plant J. 78, 269–281 (2014).


    Google Scholar
     

  • Long, C. et al. Ataxia and Purkinje cell degeneration in mice lacking the CAMTA1 transcription factor. Proc. Natl Acad. Sci. USA 111, 11521–11526 (2014).


    Google Scholar
     

  • Song, K. et al. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 125, 453–466 (2006).


    Google Scholar
     

  • Kim, Y., Park, S., Gilmour, S. J. & Thomashow, M. F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J. 75, 364–376 (2013).


    Google Scholar
     

  • Jiang, X., Hoehenwarter, W., Scheel, D. & Lee, J. Phosphorylation of the CAMTA3 transcription factor triggers its destabilization and nuclear export. Plant Physiol. 184, 1056–1071 (2020).

  • Chao, L., Kim, Y., Gilmour, S. J. & Thomashow, M. F. Temperature modulation of CAMTA3 gene induction activity is mediated through the DNA binding domain. Plant J. 112, 235–248 (2022).


    Google Scholar
     

  • Jung, J.-H. et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585, 256–260 (2020).


    Google Scholar
     

  • Strasser, B., Alvarez, M. J., Califano, A. & Cerdán, P. D. A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature. Plant J. 58, 629–640 (2009).


    Google Scholar
     

  • Susila, H. et al. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science 373, 1137–1142 (2021).


    Google Scholar
     

  • Benn, G. et al. A key general stress response motif is regulated non-uniformly by CAMTA transcription factors. Plant J. Cell Mol. Biol. 80, 82–92 (2014).


    Google Scholar
     

  • Mockler, T. C. et al. The diurnal project: Diurnal and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb. Symp. Quant. Biol. 72, 353–363 (2007).


    Google Scholar
     

  • O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).


    Google Scholar
     

  • Kidokoro, S. et al. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell 29, 760–774 (2017).


    Google Scholar
     

  • Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).


    Google Scholar
     

  • Liu, C. et al. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135, 1481–1491 (2008).


    Google Scholar
     

  • Urrea Castellanos, R. et al. FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. Plant J. 104, 7–17 (2020).


    Google Scholar
     

  • Jeon, J., Cho, C., Lee, M. R., Van Binh, N. & Kim, J. CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 Regulate lateral root development in response to cold stress in arabidopsis. Plant Cell 28, 1828–1843 (2016).


    Google Scholar
     

  • Šimášková, M. et al. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat. Commun. 6, 8717 (2015).


    Google Scholar
     

  • Shao, J., Liu, X., Wang, R., Zhang, G. & Yu, F. The Over-Expression of an arabidopsis B3 transcription factor, ABS2/NGAL1, leads to the loss of flower petals. PLOS ONE 7, e49861 (2012).


    Google Scholar
     

  • Shang, J.-Y. et al. COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis. Plant Cell 33, 3250–3271 (2021).


    Google Scholar
     

  • Kardailsky, I. et al. Activation tagging of the floral inducer FT. Science 286, 1962–1965 (1999).


    Google Scholar
     

  • Corbesier, L. et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030–1033 (2007).


    Google Scholar
     

  • Wickland, D. P. & Hanzawa, Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene family: Functional evolution and molecular mechanisms. Mol. Plant 8, 983–997 (2015).


    Google Scholar
     

  • Li, Z. et al. Safflower CtFT genes orchestrating flowering time and flavonoid biosynthesis. BMC Plant Biol. 24, 1232 (2024).


    Google Scholar
     

  • Buer, C. S., Imin, N. & Djordjevic, M. A. Flavonoids: New roles for old molecules. J. Integr. Plant Biol. 52, 98–111 (2010).


    Google Scholar
     

  • Schulz, E., Tohge, T., Zuther, E., Fernie, A. R. & Hincha, D. K. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci. Rep. 6, 34027 (2016).


    Google Scholar
     

  • Knauer, T., Dümmer, M., Landgraf, F. & Forreiter, C. A Negative effector of blue light-induced and gravitropic bending in arabidopsis. Plant Physiol. 156, 439–447 (2011).


    Google Scholar
     

  • Imaizumi, T., Schultz, T. F., Harmon, F. G., Ho, L. A. & Kay, S. A. FKF1 F-Box Protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309, 293–297 (2005).


    Google Scholar
     

  • Imaizumi, T., Tran, H. G., Swartz, T. E., Briggs, W. R. & Kay, S. A. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302–306 (2003).


    Google Scholar
     

  • Baudry, A. et al. F-Box proteins FKF1 and LKP2 Act in concert with ZEITLUPE to control Arabidopsis clock progression[C][W]. Plant Cell 22, 606–622 (2010).


    Google Scholar
     

  • Takase, T. et al. LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J. 67, 608–621 (2011).


    Google Scholar
     

  • Zhao, Z. et al. CRY2 interacts with CIS1 to regulate thermosensory flowering via FLM alternative splicing. Nat. Commun. 13, 7045 (2022).


    Google Scholar
     

  • Halliday, K. J., Salter, M. G., Thingnaes, E. & Whitelam, G. C. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J. 33, 875–885 (2003).


    Google Scholar
     

  • Halliday, K. J. & Whitelam, G. C. Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiol. 131, 1913–1920 (2003).


    Google Scholar
     

  • Burko, Y. et al. PIF7 is a master regulator of thermomorphogenesis in shade. Nat. Commun. 13, 4942 (2022).


    Google Scholar
     

  • Mehta, D. et al. Twilight length alters growth and flowering time in Arabidopsis via LHY/CCA1. Sci. Adv. 10, eadl3199 (2024).


    Google Scholar
     

  • Sullivan, S. et al. Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding. Nat. Commun. 12, 6129 (2021).


    Google Scholar
     

  • Pedmale, U. V. & Liscum, E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting orotein NPH3*. J. Biol. Chem. 282, 19992–20001 (2007).


    Google Scholar
     

  • Haga, K., Mayama, T., yamada, M. & Sakai, T. Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to high-intensity light in phototropic responses | Plant Cell 4, 1098–1112 (2015).

  • Motchoulski, A. & Liscum, E. Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961–964 (1999).


    Google Scholar
     

  • Reuter, L. et al. Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism. Nat. Commun. 12, 6128 (2021).


    Google Scholar
     

  • Zhao, X. et al. Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana. J. Integr. Plant Biol. 60, 562–577 (2018).

  • Roberts, D. et al. Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-ring E3 ubiquitin ligase CRL3NPH3[W]. Plant Cell 23, 3627–3640 (2011).


    Google Scholar
     

  • Suetsugu, N. & Wada, M. Two coiled-coil proteins, WEB1 and PMI2, suppress the signaling pathway of chloroplast accumulation response that is mediated by two phototropin-interacting proteins, RPT2 and NCH1, in seed plants. Int. J. Mol. Sci. 18, 1469 (2017).


    Google Scholar
     

  • Suetsugu, N. et al. RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proc. Natl. Acad. Sci. USA 113, 10424–10429 (2016).

  • Bouché, N., Scharlat, A., Snedden, W., Bouchez, D. & Fromm, H. A novel family of Calmodulin-binding transcription activators in multicellular organisms. J. Biol. Chem. 277, 21851–21861 (2002).


    Google Scholar
     

  • Tähtiharju, S., Sangwan, V., Monroy, A. F., Dhindsa, R. S. & Borg, M. The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta 203, 442–447 (1997).


    Google Scholar
     

  • Yang, L. et al. Potato NPH3/RPT2-like protein StNRL1, targeted by a phytophthora infestans RXLR effector, is a susceptibility factor1[OPEN]. Plant Physiol. 171, 645–657 (2016).


    Google Scholar
     

  • Naqvi, S. et al. Blue-light receptor phototropin 1 suppresses immunity to promote Phytophthora infestans infection. New Phytol. 233, 2282–2293 (2022).

  • Khan, I. et al. Calcium-promoted interaction between the C2-domain protein EHB1 and metal transporter IRT1 inhibits arabidopsis iron acquisition. Plant Physiol. 180, 1564–1581 (2019).


    Google Scholar
     

  • Stoelzle, S., Kagawa, T., Wada, M., Hedrich, R. & Dietrich, P. Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc. Natl Acad. Sci. USA 100, 1456–1461 (2003).


    Google Scholar
     

  • Harada, A., Sakai, T. & Okada, K. phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc. Natl. Acad. Sci. USA 100, 8583–8588 (2003).


    Google Scholar
     

  • Łabuz, J. et al. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study. J. Exp. Bot. 67, 3953–3964 (2016).


    Google Scholar
     

  • Lehmann, P. et al. Transitions of gene expression induced by short-term blue light. Plant Biol. 13, 349–361 (2011).


    Google Scholar
     

  • Sablowski, R. & Carnier Dornelas, M. Interplay between cell growth and cell cycle in plants. J. Exp. Bot. 65, 2703–2714 (2014).


    Google Scholar
     

  • Lee, H. O., Davidson, J. M. & Duronio, R. J. Endoreplication: polyploidy with purpose. Genes Dev. 23, 2461–2477 (2009).


    Google Scholar
     

  • Huala, E. et al. Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science 278, 2120–2123 (1997).


    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).


    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).


    Google Scholar
     

  • Li, C., Deans, N. C. & Buell, C. R. Simple Tidy GeneCoEx”: A gene co-expression analysis workflow powered by tidyverse and graph-based clustering in R. Plant Genome 16, e20323 (2023).


    Google Scholar
     

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. 1695, http://igraph.org (2006).

  • Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2008).


    Google Scholar
     

  • Sherman, B. T. et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50, W216–W221 (2022).


    Google Scholar
     

  • Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A. & Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2393 (2000).


    Google Scholar