• Brown, M. T. & Bussell, J. K. Medication adherence: WHO Cares? Mayo Clin. Proc. 86, 304–314 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lars, O. & Terrence, B. Adherence to medication. New Engl. J. Med. 126, 1196–1206 (2005).

  • Abdool Karim, Q. et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329, 1168–1174 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirtane, A. R. et al. Development of an oral once-weekly drug delivery system for HIV antiretroviral therapy. Nat. Commun. 9, 2 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bangsberg, D. R. et al. Adherence–resistance relationships for protease and non-nucleoside reverse transcriptase inhibitors explained by virological fitness. AIDS 20, 223 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Verma, M. et al. A gastric resident drug delivery system for prolonged gram-level dosing of tuberculosis treatment. Sci. Transl. Med. 11, eaau6267 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Qerem, W., Jarab, A. S., Badinjki, M., Hyassat, D. & Qarqaz, R. Exploring variables associated with medication non-adherence in patients with type 2 diabetes mellitus. PLoS ONE 16, e0256666 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chai, P. R. et al. Digital pills to measure opioid ingestion patterns in emergency department patients with acute fracture pain: a pilot study. J. Med. Internet Res. 19, e19 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Bleser, L., De Geest, S., Vandenbroeck, S., Vanhaecke, J. & Dobbels, F. How accurate are electronic monitoring devices? A laboratory study testing two devices to measure medication adherence. Sensors 10, 1652–1660 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mason, M. et al. Technologies for medication adherence monitoring and technology assessment criteria: narrative review. JMIR mHealth uHealth 10, e35157 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chai, P. R. et al. Utilizing an ingestible biosensor to assess real-time medication adherence. J. Med. Toxicol. 11, 439–444 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aldeer, M., Javanmard, M. & Martin, R. P. A review of medication adherence monitoring technologies. Appl. Syst. Innov. 1, 14 (2018).

    Article 

    Google Scholar
     

  • Conway, C. M. & Kelechi, T. J. Digital health for medication adherence in adult diabetes or hypertension: an integrative review. JMIR Diab. 2, e8030 (2017).


    Google Scholar
     

  • Chai, P. R. et al. DigiPrEP: a pilot trial to evaluate the feasibility, acceptability, and accuracy of a digital pill system to measure PrEP adherence in men who have sex with men who use substances. JAIDS J. Acquired Immune Defic. Syndromes 89, e5 (2022).

    Article 

    Google Scholar
     

  • Browne, S. H., Behzadi, Y. & Littlewort, G. Let visuals tell the story: medication adherence in patients with type II diabetes captured by a novel ingestion sensor platform. JMIR mHealth uHealth 3, e4292 (2015).

    Article 

    Google Scholar
     

  • Sharova, A. S. & Caironi, M. Sweet electronics: honey-gated complementary organic transistors and circuits operating in air. Adv. Mater. 33, 2103183 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bettinger, C. J. Materials advances for next-generation ingestible electronic medical devices. Trends Biotechnol. 33, 575–585 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Song, J. W. et al. Bioresorbable, wireless, and battery-free system for electrotherapy and impedance sensing at wound sites. Sci. Adv. 9, eade4687 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery. Proc. Natl. Acad. Sci. USA 120, e2217734120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • You, S. S. et al. An ingestible device for gastric electrophysiology. Nat. Electron 7, 497–508 (2024).

    Article 

    Google Scholar
     

  • Nadeau, P. et al. Prolonged energy harvesting for ingestible devices. Nat. Biomed. Eng. 1, 1–8 (2017).

    Article 

    Google Scholar
     

  • Balakrishnan, G. et al. Gelatin-based ingestible impedance sensor to evaluate gastrointestinal epithelial barriers. Adv. Mater. 35, 2211581 (2023).

    Article 

    Google Scholar
     

  • Rezaie, M., Rafiee, Z. & Choi, S. A biobattery capsule for ingestible electronics in the small intestine: biopower production from intestinal fluids activated germination of exoelectrogenic bacterial endospores. Adv. Energy Mater. 13, 2202581 (2023).

    Article 

    Google Scholar
     

  • Cataldi, P. et al. An electrically conductive oleogel paste for edible electronics. Adv. Funct. Mater. 32, 2113417 (2022).

    Article 

    Google Scholar
     

  • Li, S. et al. Bioresorbable, wireless, passive sensors for continuous pH measurements and early detection of gastric leakage. Sci. Adv. 10, eadj0268 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, K. K. & Joyce, A. M. Complications of capsule endoscopy. Gastrointest. Endosc. Clin. North Am. 17, 169–178 (2007).

    Article 

    Google Scholar
     

  • Abdigazy, A. et al. End-to-end design of ingestible electronics. Nat. Electron 7, 102–118 (2024).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gao, D., Lv, J. & Lee, P. S. Natural polymer in soft electronics: opportunities, challenges, and future prospects. Adv. Mater. 34, 2105020 (2022).

    Article 

    Google Scholar
     

  • Sharova, A. S., Melloni, F., Lanzani, G., Bettinger, C. J. & Caironi, M. Edible electronics: the vision and the challenge. Adv. Mater. Technol. 6, 2000757 (2021).

    Article 

    Google Scholar
     

  • Greenway, F. L. et al. A randomized, double-blind, placebo-controlled study of gelesis100: a novel nonsystemic oral hydrogel for weight loss. Obesity 27, 205–216 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Andrew, L. J., Lizundia, E. & MacLachlan, M. J. Designing for degradation: transient devices enabled by (nano)cellulose. Adv. Mater. 37, 2401560 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014).

    Article 

    Google Scholar
     

  • Say, M. G. et al. Ultrathin paper microsupercapacitors for electronic skin applications. Adv. Mater. Technol. 7, 2101420 (2022).

    Article 

    Google Scholar
     

  • Li, T. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Arca, H. C. et al. Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules 19, 2351–2376 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Diao, Y. et al. Enzymic degradation of hydroxyethyl cellulose and analysis of the substitution pattern along the polysaccharide chain. Carbohydr. Polym. 169, 92–100 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, Y. K. et al. Room temperature electrochemical sintering of ZN microparticles and its use in printable conducting inks for bioresorbable electronics. Adv. Mater. 29, 1702665 (2017).

    Article 

    Google Scholar
     

  • Kim, J. et al. Electroceuticals for regeneration of long nerve gap using biodegradable conductive conduits and implantable wireless stimulator. Adv. Sci. 10, 2302632 (2023).

    Article 

    Google Scholar
     

  • Hong, X. et al. High-permittivity solvents increase mxene stability and stacking order enabling ultraefficient terahertz shielding. Adv. Sci. 11, 2305099 (2024).

    Article 

    Google Scholar
     

  • Hosseini, E., Arjmand, M., Sundararaj, U. & Karan, K. Filler-free conducting polymers as a new class of transparent electromagnetic interference shields. ACS Appl. Mater. Interfaces 12, 28596–28606 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yun, T. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 1906769 (2020).

    Article 

    Google Scholar
     

  • Biswas, B., Karmakar, A. & Chandra, V. Miniaturised wideband ingestible antenna for wireless capsule endoscopy. IET Microw. Antenna Prop. 14, 293–301 (2020).

    Article 

    Google Scholar
     

  • Hadi, A., Cil, E., Ozdil, Z. C. C., Nikolayev, D. & Dumanli, S. Gastrointestinal Segment Tracking of Ingestible Capsules Using Biodegradable Superstrates. in Proc. 19th European Conference on Antennas and Propagation (EuCAP) 1–5 (IEEE, Stockholm, Sweden). https://doi.org/10.23919/EuCAP63536.2025.10999460. (IEEE, 2025).

  • Bora, P. J., Anil, A. G., Vinoy, K. J. & Ramamurthy, P. C. Outstanding absolute electromagnetic interference shielding effectiveness of cross-linked PEDOT: PSS film. Adv. Mater. Inter 6, 1901353 (2019).

    Article 

    Google Scholar
     

  • Hukins, D. W. L., Mahomed, A. & Kukureka, S. N. Accelerated aging for testing polymeric biomaterials and medical devices. Med. Eng. Phys. 30, 1270–1274 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Q. et al. High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nat. Commun. 13, 6518 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pomerantseva, I. et al. Degradation behavior of poly(glycerol sebacate. J. Biomed. Mater. Res. 91A, 1038–1047 (2009).

    Article 

    Google Scholar
     

  • Franc, A., Vetchý, D. & Fülöpová, N. Commercially available enteric empty hard capsules, production technology and application. Pharmaceuticals 15, 1398 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naeem, A. et al. Hydroxyethyl cellulose-based hydrogels as controlled release carriers for amorphous solid dispersion of bioactive components of radix paeonia alba. Molecules 28, 7320 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y.-C., Ho, H.-O., Liu, D.-Z., Siow, W.-S. & Sheu, M.-T. Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose. PLoS ONE 10, e0116914 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafezi, H. et al. An ingestible sensor for measuring medication adherence. IEEE Trans. Biomed. Eng. 62, 99–109 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lamanna, L., Cataldi, P., Friuli, M., Demitri, C. & Caironi, M. Monitoring of drug release via intra body communication with an edible pill. Adv. Mater. Technol. 8, 2200731 (2023).

    Article 

    Google Scholar
     

  • Lee, G. et al. A bioresorbable peripheral nerve stimulator for electronic pain block. Sci. Adv. 8, eabp9169 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, K. et al. Bioresorbable electrode array for electrophysiological and pressure signal recording in the brain. Adv. Health. Mater. 8, e1801649 (2019).

    Article 

    Google Scholar
     

  • Turnlund, J., Keyes, W., Peiffer, G. & Chiang, G. Molybdenum absorption, excretion, and retention studied with stable isotopes in young men during depletion and repletion. Am. J. Clin. Nutr. 61, 1102–1109 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Schauer, A. et al. Biocompatibility and degradation behavior of molybdenum in an in vivo rat model. Materials 14, 7776 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jay Murray, F., Tyl, R. W., Sullivan, F. M., Tiwary, A. K. & Carey, S. Developmental toxicity study of sodium molybdate dihydrate administered in the diet to Sprague Dawley rats. Reprod. Toxicol. 49, 202–208 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Burrough, E. R., De Mille, C. & Gabler, N. K. Zinc overload in weaned pigs: tissue accumulation, pathology, and growth impacts. J. VET Diagn. Invest. 31, 537–545 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nordberg, M. & Nordberg, G. F. Toxicology and Biological Monitoring of Metals. in General, Applied and Systems Toxicology (John Wiley & Sons, Ltd). https://doi.org/10.1002/9780470744307.gat145.(Wiley, 2011).