• Tucker, M. A. & Rogers, T. L. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proc. R. Soc. B: Biol. Sci. 281, 20142103 (2014).

    Article 

    Google Scholar
     

  • Reum, J. C., Blanchard, J. L., Holsman, K. K., Aydin, K. & Punt, A. E. Species-specific ontogenetic diet shifts attenuate trophic cascades and lengthen food chains in exploited ecosystems. Oikos 128, 1051–1064 (2019).

    Article 

    Google Scholar
     

  • Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl. Acad. Sci. 105, 4191–4196 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Heneghan, R. F., Hatton, I. A. & Galbraith, E. D. Climate change impacts on marine ecosystems through the lens of the size spectrum. Emerg. Top. Life Sci. 3, 233–243 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindeman, R. L. The trophic-dynamic aspect of ecology. Bull. Math. Biol. 53, 167–191 (1991).

    Article 

    Google Scholar
     

  • Ducrotoy, J.-P., Elliott, M. & de Jonge, V. N. The North Sea. Mar. Pollut. Bull. 41, 5–23 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B: Biol. Sci. 365, 2081–2091 (2010).

    Article 

    Google Scholar
     

  • Schneider, F. D., Scheu, S. & Brose, U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol. Lett. 15, 436–443 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levin, S. A. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431–436 (1998).

    Article 

    Google Scholar
     

  • Fath, B. D., Scharler, U. M., Ulanowicz, R. E. & Hannon, B. Ecological network analysis: network construction. Ecol. Model. 208, 49–55 (2007).

    Article 

    Google Scholar
     

  • Hunsicker, M. E. et al. Functional responses and scaling in predator–prey interactions of marine fishes: contemporary issues and emerging concepts. Ecol. Lett. 14, 1288–1299 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Goerner, S., Fiscus, D. & Fath, B. Using energy network science (ENS) to connect resilience with the larger story of systemic health and development. Émerg.: Complex. Organ. 17, 1–21 (2015).


    Google Scholar
     

  • O’Gorman, E. J. et al. A simple model predicts how warming simplifies wild food webs. Nat. Clim. Change 9, 611–616 (2019).

    Article 

    Google Scholar
     

  • Kortsch, S. et al. Food-web structure varies along environmental gradients in a high-latitude marine ecosystem. Ecography 42, 295–308 (2019).

    Article 

    Google Scholar
     

  • IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2022).

  • Nakazawa, T., Ushio, M. & Kondoh, M. In Advances in Ecological Research. 45, 269-302 (Elsevier, 2011).

  • Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frelat, R. et al. Food web structure and community composition: a comparison across space and time in the North Sea. Ecography 2022, 5945 (2022).

    Article 

    Google Scholar
     

  • Flanagan, P. H., Jensen, O. P., Morley, J. W. & Pinsky, M. L. Response of marine communities to local temperature changes. Ecography 42, 214–224 (2019).

    Article 

    Google Scholar
     

  • Pecuchet, L. et al. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web. Glob. Change Biol. 26, 4894–4906 (2020).

    Article 

    Google Scholar
     

  • Gulev, S. K. et al. Changing state of the climate system. https://doi.org/10.1017/9781009157896.004 (2021).

  • Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Boyce, D. G., Frank, K. T., Worm, B. & Leggett, W. C. Spatial patterns and predictors of trophic control in marine ecosystems. Ecol. Lett. 18, 1001–1011 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lynam, C. P. et al. Interaction between top-down and bottom-up control in marine food webs. Proc. Natl. Acad. Sci. 114, 1952–1957 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. 106, 12788–12793 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung, W. W. et al. Shrinking of fish exacerbates the impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar
     

  • Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. change 1, 401–406 (2011).

    Article 

    Google Scholar
     

  • Coghlan, A. R. et al. Mean reef fish body size decreases towards warmer waters. Ecol. Lett. 27, e14375 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Capuzzo, E. et al. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Glob. change Biol. 24, e352–e364 (2018).

    Article 

    Google Scholar
     

  • Howarth, L. M. et al. Effects of bottom trawling and primary production on the composition of biological traits in benthic assemblages. Mar. Ecol. Prog. Ser. 602, 31–48 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pauly, D. & Palomares, M.-L. Fishing down the marine food web: it is far more pervasive than we thought. Bull. Mar. Sci. 76, 197–212 (2005).


    Google Scholar
     

  • Hsieh, C. -h, Yamauchi, A., Nakazawa, T. & Wang, W.-F. Fishing effects on age and spatial structures undermine population stability of fishes. Aquat. Sci. 72, 165–178 (2010).

    Article 

    Google Scholar
     

  • Berkeley, S. A., Hixon, M. A., Larson, R. J. & Love, M. S. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29, 23–32 (2004).

    Article 

    Google Scholar
     

  • Báez, J. C., Gimeno, L. & Real, R. North Atlantic Oscillation and fisheries management during global climate change. Rev. Fish. Biol. Fish. 31, 319–336 (2021).

    Article 

    Google Scholar
     

  • Kirby, R. R., Beaugrand, G. & Lindley, J. A. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12, 548–561 (2009).

    Article 

    Google Scholar
     

  • Perkins, D. M. et al. Consistent predator-prey biomass scaling in complex food webs. Nat. Commun. 13, 4990 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gauzens, B. et al. fluxweb: An R package to easily estimate energy fluxes in food webs. Methods Ecol. Evol. 10, 270–279 (2019).

    Article 

    Google Scholar
     

  • Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, M. S., Couce, E., Schratzberger, M. & Lynam, C. P. Climate change affects the distribution of diversity across marine food webs. Glob. Change Biol. 29, 6606–6619 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Riede, J. O. et al. Stepping in Elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecol. Lett. 14, 169–178 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, M. S. et al. Fish functional groups of the North Atlantic and Arctic Oceans. Earth Syst. Sci. Data Discuss. 2024, 1–29 (2024).


    Google Scholar
     

  • Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jennings, S. & Warr, K. J. Smaller predator-prey body size ratios in longer food chains. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 270, 1413–1417 (2003).

    Article 

    Google Scholar
     

  • Pauly, D. Gasping Fish and Panting Squids: Oxygen, Temperature and the Growth of Water-breathing Animals. (International Ecology Institute, 2019).

  • Forster, J. & Hirst, A. G. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 26, 483–492 (2012).

    Article 

    Google Scholar
     

  • Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Tara Marshall, C. Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Glob. change Biol. 20, 1023–1031 (2014).

    Article 

    Google Scholar
     

  • Kuparinen, A. et al. Fish age at maturation is influenced by temperature independently of growth. Oecologia 167, 435–443 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Neuheimer, A. B. & Grønkjær, P. Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Glob. Change Biol. 18, 1812–1822 (2012).

    Article 

    Google Scholar
     

  • Wootton, H. F., Morrongiello, J. R., Schmitt, T. & Audzijonyte, A. Smaller adult fish size in warmer water is not explained by elevated metabolism. Ecol. Lett. 25, 1177–1188 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldenberg, J., Bisschop, K., D’Alba, L. & Shawkey, M. D. The link between body size, colouration and thermoregulation and their integration into ecogeographical rules: a critical appraisal in light of climate change. Oikos 2022, e09152 (2022).

    Article 

    Google Scholar
     

  • Tirsgaard, B., Behrens, J. W. & Steffensen, J. F. The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod Gadus morhua L. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 179, 89–94 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. science 308, 1912–1915 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Cheung, W. W. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish. Fish. 10, 235–251 (2009).

    Article 

    Google Scholar
     

  • Fernandes, J. A. et al. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Glob. change Biol. 19, 2596–2607 (2013).

    Article 

    Google Scholar
     

  • Reum, J. C., Holsman, K. K., Aydin, K. Y., Blanchard, J. L. & Jennings, S. Energetically relevant predator–prey body mass ratios and their relationship with predator body size. Ecol. evolution 9, 201–211 (2019).

    Article 

    Google Scholar
     

  • Ortiz, E., Ramos-Jiliberto, R. & Arim, M. Prey selection along a predator’s body size gradient evidences the role of different trait-based mechanisms in food web organization. Plos one 18, e0292374 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanchard, J. L. et al. Do climate and fishing influence size-based indicators of the Celtic Sea fish community structure? ICES J. Mar. Sci. 62, 405–411 (2005).

    Article 

    Google Scholar
     

  • Agnetta, D. et al. Erosion of fish trophic position: an indirect effect of fishing on food webs elucidated by stable isotopes. Philos. Trans. R. Soc. B: Biol. Sci. 379, 20230167 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Genner, M. J. et al. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Glob. Change Biol. 16, 517–527 (2010).

    Article 

    Google Scholar
     

  • Preciado, I. et al. Small-scale spatial variations of trawling impact on food web structure. Ecol. Indic. 98, 442–452 (2019).

    Article 

    Google Scholar
     

  • Wood, M. V., Carvalho, F. M. & Castello, L. Fishing shrinks the size structure of exploited coral reef fishes in Brazil. Fish. Res. 275, 107029 (2024).

    Article 

    Google Scholar
     

  • Olafsdottir, A. H. et al. Changes in weight-at-length and size-at-age of mature Northeast Atlantic mackerel (Scomber scombrus) from 1984 to 2013: effects of mackerel stock size and herring (Clupea harengus) stock size. ICES J. Mar. Sci. 73, 1255–1265 (2016).

    Article 

    Google Scholar
     

  • Shackell, N. L., Frank, K. T., Fisher, J. A., Petrie, B. & Leggett, W. C. Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem. Proc. R. Soc. B: Biol. Sci. 277, 1353–1360 (2010).

    Article 

    Google Scholar
     

  • Mollet, F. M., Poos, J. J., Dieckmann, U. & Rijnsdorp, A. D. Evolutionary impact assessment of the North Sea plaice fishery. Can. J. Fish. Aquat. Sci. 73, 1126–1137 (2016).

    Article 

    Google Scholar
     

  • Jennings, S., Pinnegar, J. K., Polunin, N. V. & Warr, K. J. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser. 226, 77–85 (2002).

    Article 

    Google Scholar
     

  • Liang, C. & Pauly, D. Fisheries impacts on China’s coastal ecosystems: unmasking a pervasive ‘fishing down’effect. PLoS One 12, e0173296 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jennings, S. & Kaiser, M. J. In Advances in Marine Biology. 34, 201–352 (Elsevier, 1998).

  • Halpern, B. S. et al. A global map of human impact on marine ecosystems. science 319, 948–952 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Bondavalli, C. & Bodini, A. How interaction strength affects the role of functional and redundant connections in food webs. Ecol. Complex. 20, 97–106 (2014).

    Article 

    Google Scholar
     

  • Van Baalen, M., Křivan, V., van Rijn, P. C. & Sabelis, M. W. Alternative food, switching predators, and the persistence of predator-prey systems. Am. Nat. 157, 512–524 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Albouy, C. et al. From projected species distribution to food-web structure under climate change. Glob. change Biol. 20, 730–741 (2014).

    Article 

    Google Scholar
     

  • Coghlan, A. R. et al. Community size structure varies with predator–prey size relationships and temperature across Australian reefs. Ecol. Evol. 12, e8789 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinnegar, J. K. (ed). Fisheries & Aquaculture Science Centre for Environment. (2019).

  • Good, S. et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12, 720 (2020).

    Article 

    Google Scholar
     

  • Donlon, C. J. et al. 2012, The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sensing of the Environment. https://doi.org/10.1016/j.rse.2010.10.017 (2011).

  • Stark J. D., Donlon C. J., Martin M. J. & McCulloch M. E., OSTIA: an operational, high resolution, real-time, global sea surface temperature analysis system., Oceans 07 IEEE Aberdeen, conference proceedings. Marine challenges: coastline to deep sea. (Aberdeen, Scotland. IEEE, 2007).

  • Zanzi, A.; Holmes, S. Fisheries data from DCF Fishing Effort Regimes data calls. European Commission, Joint Research Centre (JRC). PID: http://data.europa.eu/89h/9f8002cc-c6fc-4adb-86cd-466f935a7bda (2017).

  • Forsyth, P. J. & Kay, J. A. The economic implications of North Sea oil revenues. Fisc. Stud. 1, 1–28 (1980).

    Article 

    Google Scholar
     

  • Engelhard, G. H. et al. Forage fish, their fisheries, and their predators: who drives whom? ICES J. Mar. Sci. 71, 90–104 (2014).

    Article 

    Google Scholar
     

  • Rutterford, L. A., Genner, M. J., Engelhard, G. H., Simpson, S. D. & Hunter, E. Fishing impacts on age structure may conceal environmental drivers of body size in exploited fish populations. ICES J. Mar. Sci. 80, 848–860 (2023).

    Article 

    Google Scholar
     

  • ICES. (ed). International Council for the Exploration of the Sea. (1997).

  • A language and environment for statistical computing. R Foundation for Statistical Computing (2017).

  • Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. Maps: Draw Geographical Maps. R package version 3.4.2. https://doi.org/10.32614/CRAN.package.maps (2023).