• Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arovas, D. P., Berg, E., Kivelson, S. A. & Raghu, S. The Hubbard model. Annu. Rev. Condens. Matter Phys. 13, 239–274 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, H., Wu, F. & Das Sarma, S. Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii-Moriya interaction in twisted bilayer WSe2. Phys. Rev. Res. 2, 033087 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zang, J., Wang, J., Cano, J. & Millis, A. J. Hartree-Fock study of the moiré Hubbard model for twisted bilayer transition metal dichalcogenides. Phys. Rev. B 104, 075150 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bi, Z. & Fu, L. Excitonic density wave and spin-valley superfluid in bilayer transition metal dichalcogenide. Nat. Commun. 12, 642 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, P. W., Hussey, N. E. & Abbamonte, P. Stranger than metals. Science 377, eabh4273 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartnoll, S. A. & Mackenzie, A. P. Colloquium: Planckian dissipation in metals. Rev. Mod. Phys. 94, 041002 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Varma, C. M., Nussinov, Z. & van Saarloos, W. Singular or non-Fermi liquids. Phys. Rep. 361, 267–417 (2002).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tarruell, L. & Sanchez-Palencia, L. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. C.R. Phys. 19, 365–393 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Knüppel, P. et al. Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers. Nat. Commun. 16, 1959 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Y.-F. & Jiang, H.-C. Topological superconductivity in the doped chiral spin liquid on the triangular lattice. Phys. Rev. Lett. 125, 157002 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, X.-Y., Vishwanath, A. & Zhang, Y.-H. Doping the chiral spin liquid: topological superconductor or chiral metal. Phys. Rev. B 103, 165138 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, Y. & Sheng, D. N. Topological chiral and nematic superconductivity by doping Mott insulators on triangular lattice. Phys. Rev. X 12, 031009 (2022).

    CAS 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. Experimental signature of layer skyrmions and implications for band topology in twisted WSe2 bilayers. Nat. Phys. 21, 1217–1223 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Muñoz-Segovia D., Crépel V., Queiroz R. & Millis A. J. Twist-angle evolution of the intervalley-coherent antiferromagnet in twisted WSe2. Phys. Rev. B 112, 085111 (2025).

  • Bélanger, M., Fournier, J. & Sénéchal, D. Superconductivity in the twisted bilayer transition metal dichalcogenide WSe2: a quantum cluster study. Phys. Rev. B 106, 235135 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zegrodnik, M. & Biborski, A. Mixed singlet-triplet superconducting state within the moiré t–J–U model applied to twisted bilayer WSe2. Phys. Rev. B 108, 064506 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Klebl, L., Fischer, A., Classen, L., Scherer, M. M. & Kennes, D. M. Competition of density waves and superconductivity in twisted tungsten diselenide. Phys. Rev. Res. 5, L012034 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Christos M., Bonetti, P. M. & Scheurer M. S. Approximate symmetries, insulators, and superconductivity in continuum-model description of twisted WSe2. Phys. Rev. Lett. 135, 046503 (2025).

  • Myerson-Jain, N. & Xu, C. Superconductor-insulator transition in the TMD moiré systems and the deconfined quantum critical point. Preprint at https://doi.org/10.48550/arXiv.2406.12971 (2024).

  • Tuo, C., Li, M.-R., Wu, Z., Sun, W. & Yao, H. Theory of topological superconductivity and antiferromagnetic correlated insulators in twisted bilayer WSe2. Nat. Commun. 16, 9525 (2025).

  • Akbar, W., Biborski, A., Rademaker, L. & Zegrodnik, M. Topological superconductivity with mixed singlet-triplet pairing in moiré transition metal dichalcogenide bilayers. Phys. Rev. B 110, 064516 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, S., Mendez-Valderrama, J. F., Wang, X. & Chowdhury, D. Theory of correlated insulators and superconductor at ν = 1 in twisted WSe2. Nat. Commun. 16, 1701 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, F. et al. Superconductivity in twisted WSe2 from topology-induced quantum fluctuations. Phys. Rev. Lett. 134, 136503 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, F., Li, C., Cano, J. & Si, Q. Kondo-lattice phenomenology of twisted bilayer WSe2 from compact molecular orbitals of topological bands. Preprint at https://doi.org/10.48550/arXiv.2503.21769 (2025).

  • Chubukov, A. V. & Varma, C. M. Quantum criticality and superconductivity in twisted transition metal dichalcogenides. Phys. Rev. B 111, 014507 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, Y.-M., Wu, Z. & Yao, H. Pair-density-wave and chiral superconductivity in twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 130, 126001 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guerci, D., Kaplan, D., Ingham, J., Pixley, J. H. & Millis, A. J. Topological superconductivity from repulsive interactions in twisted WSe2. Preprint at https://doi.org/10.48550/arXiv.2408.16075 (2024).

  • Fischer, A. et al. Theory of intervalley-coherent AFM order and topological superconductivity in tWSe2. Phys. Rev. X 15, 041055 (2025).

  • Schrade, C. & Fu, L. Nematic, chiral, and topological superconductivity in twisted transition metal dichalcogenides. Phys. Rev. B 110, 035143 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, J., Chou, Y.-Z., Xie, M. & Das Sarma, S. Superconductivity in twisted transition metal dichalcogenide homobilayers. Phys. Rev. B 111, L060501 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chien, T. R., Wang, Z. Z. & Ong, N. P. Effect of Zn impurities on the normal-state Hall angle in single-crystal YBa2Cu3−xZnxO7-δ. Phys. Rev. Lett. 67, 2088–2091 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Badoux, S. et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Uemura, Y. J. Condensation, excitation, pairing, and superfluid density in high-Tc superconductors: the magnetic resonance mode as a roton analogue and a possible spin-mediated pairing. J. Phys. Condens. Matter 16, S4515 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ayres, J. et al. Incoherent transport across the strange-metal regime of overdoped cuprates. Nature 595, 661–666 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gull, E., Parcollet, O. & Millis, A. J. Superconductivity and the pseudogap in the two-dimensional Hubbard model. Phys. Rev. Lett. 110, 216405 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52–57 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mourachkine, A. High-Temperature Superconductivity in Cuprates: The Nonlinear Mechanism and Tunneling Measurements (Kluwer Academic, 2002).

  • Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar