• Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Walsh, J. E. Intensified warming of the arctic: causes and impacts on middle latitudes. Glob. Planet. Change 117, 52–63 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jansen, E. et al. Past perspectives on the present era of abrupt Arctic climate change. Nat. Clim. Change 10, 714–721 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Previdi, M., Janoski, T. P., Chiodo, G., Smith, K. L. & Polvani, L. M. Arctic amplification: a rapid response to radiative forcing. Geophys. Res. Lett. 47, e2020GL089933 (2020).

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the Globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovacs, K. M., Lydersen, C., Overland, J. E. & Moore, S. E. Impacts of changing sea-ice conditions on Arctic marine mammals. Mar. Biodivers. 41, 181–194 (2010).

    Article 

    Google Scholar
     

  • Laidre, K. L. et al. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol. 29, 724–737 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isaksen, K. et al. Exceptional warming over the Barents area. Sci. Rep. 12, 13568 (2022).

    Article 

    Google Scholar
     

  • Stern, H. & Laidre, K. L. Sea-ice indicators of Polar bear habitat. Cryosphere 10, 1–15 (2016).

    Article 

    Google Scholar
     

  • Regehr, E. V. et al. Conservation status of Polar bears (Ursus maritimus) in relation to projected sea-ice declines. Biol. Lett. 12, 20160556 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mauritzen, M., Derocher, A. E. & Wiig, Ø. Space-use strategies of female Polar bears in a dynamic sea ice habitat. Can. J. Zool. 79, 1704–1713 (2001).

    Article 

    Google Scholar
     

  • Derocher, A. E. Population ecology of Polar bears at Svalbard, Norway. Popul. Ecol. 47, 267–275 (2005).

    Article 

    Google Scholar
     

  • Aars, J. et al. Estimating the Barents sea Polar bear subpopulation size. Mar. Mamm. Sci. 25, 35–52 (2009).

    Article 

    Google Scholar
     

  • Aars, J. et al. Polar bear population structure and trend in the Western Barents sea. Polar Res. 36, 1374125 (2017).

    Article 

    Google Scholar
     

  • Naciri, M., Aars, J., Blanchet, M. A., Gimenez, O. & Cubaynes, S. Reproductive senescence in Polar bears in a variable environment. Front. Ecol. Evol. 10, 960435 (2022).

    Article 

    Google Scholar
     

  • Derocher, A. E. et al. Sea ice and Polar bear Den ecology at Hopen Island, Svalbard. Mar. Ecol. Prog. Ser. 441, 273–279 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Blanchet, M.-A., Aars, J., Andersen, M. & Routti, H. Space-use strategy affects energy requirements in Barents sea Polar bears. Mar. Ecol. Prog. Ser. 639, 1–19 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lone, K., Merkel, B., Lydersen, C., Kovacs, K. M. & Aars, J. Sea ice resource selection models for Polar bears of the Barents sea subpopulation. Ecography 41, 567–578 (2018a).

    Article 
    ADS 

    Google Scholar
     

  • Griffen, B. D. Modeling the metabolic costs of swimming in Polar bears (Ursus maritimus). Polar Biol. 41, 491–503 (2018).

    Article 

    Google Scholar
     

  • Tartu, S. et al. Geographical area and life history traits influence diet in an Arctic marine predator. PLoS One 11, e0155980 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lippold, A. et al. Temporal trends of persistent organic pollutants in Barents sea Polar bears (Ursus maritimus) in relation to changes in feeding habits and body condition. Environ. Sci. Technol. 53, 984–995 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prop, J. et al. Climate change and the increasing impact of Polar bears on bird populations. Front. Ecol. Evol. 3, 33 (2015).

    Article 

    Google Scholar
     

  • Hamilton, C. D., Kovacs, K. M., Ims, R. A., Aars, J. & Lydersen, C. An Arctic predator-prey system in flux: climate change impacts on coastal space use by Polar bears and ringed seals. J. Anim. Ecol. 86, 1054–1064 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Atwood, T. C. et al. Rapid environmental change drives increased land use by an Arctic marine predator. PLoS One 11, e0155932 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro de la Guardia, L., Myers, P. G., Derocher, A. E., Lunn, N. J. & Terwisscha Van Scheltinga, A. D. Sea ice cycle in Western Hudson Bay, Canada, from a Polar bear perspective. Mar. Ecol. Prog. Ser. 564, 225–233 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ware, J. V. et al. Habitat degradation affects the summer activity of Polar bears. Oecologia 184, 87–99 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Laidre, K. L. et al. Interrelated ecological impacts of climate change on an apex predator. Ecol. Appl. 30, e02044 (2020).

    Article 

    Google Scholar
     

  • Molnar, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of Polar bears under climate change. Biol. Conserv. 143, 1612–1622 (2010).

    Article 

    Google Scholar
     

  • Molnar, P. K. et al. Fasting season length sets Temporal limits for global Polar bear persistence. Nat. Clim. Change 10, 732–738 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wilder, S. M., Raubenheimer, D. & Simpson, S. J. Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Funct. Ecol. 30, 108–117 (2016).

    Article 

    Google Scholar
     

  • Cerini, F., Childs, D. Z. & Clements, C. F. A predictive timeline of wildlife population collapse. Nat. Ecol. Evol. 7, 320–331 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Stirling, I., Lunn, N. J. & Iacozza, J. Long-term trends in the population ecology of Polar bears in Western Hudson Bay in relation to Climatic change. Arctic 52, 294–306 (1999).

    Article 

    Google Scholar
     

  • Regehr, E. V., Lunn, N. J., Amstrup, S. C. & Stirling, I. Effects of earlier sea ice breakup on survival and population size of Polar bears in Western Hudson Bay. J. Wildl. Manag. 71, 2673–2683 (2007).

    Article 

    Google Scholar
     

  • Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and Cub recruitment in Polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Lunn, N. J. et al. Demography of an apex predator at the edge of its range: impacts of changing sea ice on Polar bears in Hudson Bay. Ecol. Appl. 26, 1302–1320 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Regehr, E. V., Hunter, C. M., Caswell, H., Amstrup, S. C. & Stirling, I. Survival and breeding of Polar bears in the Southern Beaufort sea in relation to sea ice. J. Anim. Ecol. 79, 117–127 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Rode, K. D. et al. Seal body condition and atmospheric circulation patterns influence Polar bear body condition, recruitment, and feeding ecology in the Chukchi sea. Glob. Change Biol. 27, 2684–2701 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Regehr, E. V. et al. Integrated population modeling provides the first empirical estimates of vital rates and abundance for Polar bears in the Chukchi sea. Sci. Rep. 8, 16780 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penk, S. R. et al. A body composition model with multiple storage compartments for Polar bears (Ursus maritimus). Conserv. Physiol. 11, coad043 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagano, A. M. et al. Polar bear energetic and behavioral strategies on land with implications for surviving the ice-free period. Nat. Commun. 15, 44682 (2024).

    Article 

    Google Scholar
     

  • Ramsay, M. A. & Stirling, I. Reproductive biology and ecology of female Polar bears (Ursus maritimus). J. Zool. 214, 601–634 (1988).

    Article 

    Google Scholar
     

  • Atkinson, S. N. & Ramsay, M. A. The effects of prolonged fasting of the body-composition and reproductive success of female Polar bears (Ursus maritimus). Funct. Ecol. 9, 559–567 (1995).

    Article 

    Google Scholar
     

  • Derocher, A. E. & Stirling, I. The population dynamics of polar bears in western Hudson Bay. In Wildlife 2001: Populations (eds. McCullough, D. & Barrett, R.) 1150–1159 (Elsevier, 1992).

  • Rode, K. D. et al. Diet energy density estimated from isotopes in predator hair associated with survival, habitat, and population dynamics. Ecol. Appl. 33, e02751 (2023).

    Article 

    Google Scholar
     

  • Stirling, I., Spencer, C. & Andriashek, D. Immobilization of Polar bears (Ursus maritimus) with Telazol in the Canadian Arctic. J. Wildl. Dis. 25, 159–168 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christensen-Dalsgaard, S. N., Aars, J., Andersen, M., Lockyer, C. & Yoccoz, N. G. Accuracy and precision in Estimation of age of Norwegian Arctic Polar bears (Ursus maritimus) using dental cementum layers from known-age individuals. Polar Biol. 33, 589–597 (2010).

    Article 

    Google Scholar
     

  • Derocher, A. E. & Wiig, Ø. Postnatal growth in body length and mass of Polar bears (Ursus maritimus) at Svalbard. J. Zool. 256, 343–349 (2002).

    Article 

    Google Scholar
     

  • Cattet, M., Caulkett, N. A., Obbard, M. E. & Stenhouse, G. B. A body-condition index for ursids. Can. J. Zool. 80, 1156–1161 (2002).

    Article 

    Google Scholar
     

  • Thompson, D. W. J. & Wallace, J. M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Rigor, I. G., Wallace, J. M. & Colony, R. L. Response of sea ice to the Arctic Oscillation. J. Clim. 15, 2648–2663 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Galicia, M. P., Thiemann, G. W. & Dyck, M. G. Correlates of seasonal change in the body condition of an Arctic top predator. Glob. Change Biol. 26, 840–850 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Cherry, S. G, Derocher, A. E, Thiemann, G. W, & Lunn, N. J. Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. J Anim Ecol. (2013).82, 912–21.

    Article 
    PubMed 

    Google Scholar
     

  • Wood, S. N. Generalized Additive Models: an Introduction with R, 2nd edn. (CRC Press, 2017).

  • Simpson, D., Rue, H., Riebler, A., Martins, T. G. & Sørbye, S. H. Penalising model component complexity: a principled, practical approach to constructing priors. Stat. Sci. 32, 1–28 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Dambly, L. I., Isaac, N. J. B., Jones, K. E., Boughey, K. L. & O’Hara, R. B. Integrated species distribution models fitted in INLA are sensitive to mesh parameterisation. Ecography 7, doi:https://doi.org/10.1111/ecog.06391 (2023).

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical information-theoretic Approach. 2nd edn, (Springer, 2002).

  • Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.7. http://florianhartig.github.io/DHARMa/ (2024). Massicotte, P, & South, A. rnaturalearth: World Map Data from Natural Earth_. doi:https://doi.org/10.32614/CRAN.package.rnaturalearth (2023).

  • Massicotte, P, & South, A. rnaturalearth: World Map Data from Natural Earth. 10.32614/CRAN.package.rnaturalearth (2023).

  • Stirling, I. & Derocher, A. E. Effects of climate warming on Polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Aars, J. Polar bear Ursus maritimus Phipps, 1774. In Handbook of the Mammals of Europe (eds. Hackländer, K. & Zachos, F. E.) 1–24 (Springer, Cham, 2024).


    Google Scholar
     

  • Maduna, S. N. et al. Sea ice reduction drives genetic differentiation among Barents Sea polar bears. Proc. R. Soc. B 288, 20211741 (2021).

  • Bromaghin, J. F. et al. Polar bear population dynamics in the Southern Beaufort sea during a period of sea ice decline. Ecol. Appl. 25, 634–651 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Archer, L. C., Atkinson, S. N., Lunn, N., Penk, S. R. & Molnar, P. K. Energetic constraints drive the decline of a Sentinel Polar bear population. Science 387, 516–521 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Freitas, C. et al. Importance of fast ice and glacier fronts for female Polar bears and their Cubs during spring in Svalbard, Norway. Mar. Ecol. Prog. Ser. 447, 289–304 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kovacs, K. M., Liston, G. E., Reinking, A. K., Gerland, S. & Lydersen, C. Climate warming impacts on ringed seal breeding habitat in Svalbard. Ecol. Model. 495, 110790 (2024).

    Article 

    Google Scholar
     

  • Smedsrud, L. H. et al. Nordic Seas heat loss, Atlantic inflow, and Arctic sea ice cover over the last century. Rev. Geophys. 60, e2021RG000762 (2022).

  • Stirling, I. Polar Bears: the Natural History of a Threatened Species. (Fitzhenry & Whiteside, 2011).

  • Iversen, M. et al. The diet of Polar bears (Ursus maritimus) from Svalbard, Norway, inferred from scat analysis. Polar Biol. 36, 561–571 (2013).

    Article 

    Google Scholar
     

  • Lydersen, C. Status and biology of ringed seals (Phoca hispida) in Svalbard. In Ringed Seals in the North Atlantic (eds. Heide-Jørgensen, M. P. & Lydersen, C.) 46–62 (NAMMCO, 1998).

  • Carlens, H., Lydersen, C., Krafft, B. A. & Kovacs, K. M. Spring haul-out behavior of ringed seals (Pusa hispida) in Kongsfjorden, Svalbard. Mar. Mamm. Sci. 22, 379–393 (2006).

    Article 

    Google Scholar
     

  • Derocher, A. E., Andersen, M., Wiig, Ø. & Aars, J. Sexual dimorphism and the mating ecology of Polar bears (Ursus maritimus) at Svalbard. Behav. Ecol. Sociobiol. 64, 939–946 (2010).

    Article 

    Google Scholar
     

  • Laidre, K. L. et al. Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears (Ursus maritimus). Proc. R. Soc. B 280, 1752 (2013).

  • Ims, R. A. Spatial clumping of sexually receptive females induces space sharing among male voles. Nature 335, 541–543 (1988).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosing-Asvid, A. The influence of climate variability on Polar bear (Ursus maritimus) and ringed seal (Pusa hispida) population dynamics. Can. J. Zool. 84, 357–364 (2006).

    Article 

    Google Scholar
     

  • Rode, K. D., Reist, J. D., Peacock, E. & Stirling, I. Comments in response to “Estimating the energetic contribution of polar bear (Ursus maritimus) summer diets to the total energy budget” by Dyck and Kebreab (2009). J. Mammal. 91, 1517–1523 (2010).

  • Derocher, A. E., Wiig, Ø. & Andersen, M. Diet composition of Polar bears in Svalbard and the Western Barents sea. Polar Biol. 25, 448–452 (2002).

    Article 

    Google Scholar
     

  • Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future importance of large whales as food for Polar bears. Front. Ecol. Environ. 16, 515–524 (2018).

    Article 

    Google Scholar
     

  • Le Moullec, M., Pedersen, A. Ø., Stien, A., Rosvold, J. & Hansen, B. B. A century of conservation: the ongoing recovery of Svalbard reindeer. J. Wildl. Manag. 83, 1676–1686 (2019).

    Article 

    Google Scholar
     

  • Stempniewicz, L., Kulaszewicz, I. & Aars, J. Yes, they can: Polar bears (Ursus maritimus) successfully Hunt Svalbard reindeer (Rangifer Tarandus platyrhynchus). Polar Biol. 44, 2199–2206 (2021).

    Article 

    Google Scholar
     

  • Kovacs, K. M., Aars, J. & Lydersen, C. Walruses recovering after 60 + years of protection at Svalbard, Norway. Polar Res. 33, 26034 (2014).

    Article 

    Google Scholar
     

  • Lønø, O. The Polar bear (Ursus maritimus Phipps) in the Svalbard area. Norsk Polarinstitutt Skrifter 149, 103 (1970).


    Google Scholar
     

  • Merkel, B., Lydersen, C., Yoccoz, N. G. & Kovacs, K. M. The world’s northernmost harbour seal population—how many are there? PLoS One 8, e67576 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiig, Ø., Aars, J. & Born, E. W. Effects of climate change on Polar bears. Sci. Prog. 91, 151–173 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton, S. G. & Derocher, A. E. Assessment of global Polar bear abundance and vulnerability. Anim. Conserv. 22, 83–95 (2019).

    Article 

    Google Scholar
     

  • Laidre, K. L. et al. Transient benefits of climate change for a high-Arctic Polar bear (Ursus maritimus) subpopulation. Glob. Change Biol. 26, 6251–6265 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Durner, G. M. et al. Predicting 21st-century Polar bear habitat distribution from global climate models. Ecol. Monogr. 79, 25–58 (2009).

    Article 

    Google Scholar
     

  • Lone, K. et al. Aquatic behaviour of Polar bears (Ursus maritimus) in an increasingly ice-free Arctic. Sci. Rep. 8, 9677 (2018b).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rode, K. D. et al. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two Polar bear populations. Glob. Change Biol. 20, 76–88 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Rode, K. D. et al. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity. Glob. Change Biol. 24, 410–423 (2018).

    Article 
    ADS 

    Google Scholar