Tabari, H., Madani, K. & Willems, P. The contribution of anthropogenic influence to more anomalous extreme precipitation in Europe. Environ. Res. Lett. 15, 104077 (2020).
Reed, K. A., Wehner, M. F. & Zarzycki, C. M. Attribution of 2020 hurricane season extreme rainfall to human-induced climate change. Nat. Commun. 13, 1905 (2022).
Zhou, S., Yu, B. & Zhang, Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 9, eabo1638 (2023).
Ahmadalipour, A., Moradkhani, H. & Kumar, M. Mortality risk from heat stress expected to hit poorest nations the hardest. Clim. Change 152, 569–579 (2019).
WMO. Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) WMO-No. 1267 (WMO, 2021).
Eckstein, D., Künzel, V. & Schäfer, L. Global climate risk index 2021. Germanwatch e.V. https://www.germanwatch.org/sites/default/files/Global%20Climate%20Risk%20Index%202021_2.pdf (2021).
Ahmadalipour, A. & Moradkhani, H. Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA). Environ. Int. 117, 215–225 (2018).
Formetta, G. & Feyen, L. Empirical evidence of declining global vulnerability to climate-related hazards. Glob. Environ. Change 57, 101920 (2019).
Gazzotti, P. et al. Persistent inequality in economically optimal climate policies. Nat. Commun. 12, 3421 (2021).
Jay, O. et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 398, 709–724 (2021).
Callahan, C. W. & Mankin, J. S. Globally unequal effect of extreme heat on economic growth. Sci. Adv. 8, eadd3726 (2022).
McElroy, S., Ilango, S., Dimitrova, A., Gershunov, A. & Benmarhnia, T. Extreme heat, preterm birth, and stillbirth: a global analysis across 14 lower-middle income countries. Environ. Int. 158, 106902 (2022).
Wing, O. E. J. et al. Inequitable patterns of US flood risk in the Anthropocene. Nat. Clim. Change 12, 156–162 (2022).
Hallegatte, S., Fay, M. & Barbier, E. B. Poverty and climate change: Introduction. Environ. Dev. Econ. 23, 217–233 (2018).
Masood, E., Tollefson, J. & Irwin, A. COP27 climate talks: What succeeded, what failed and what’s next. Nature 612, 16–17 (2022).
Ahmadalipour, A., Moradkhani, H., Castelletti, A. & Magliocca, N. Future drought risk in Africa: integrating vulnerability, climate change, and population growth. Sci. Total Environ. 662, 672–686 (2019).
Hosseinzadehtalaei, P., Termonia, P. & Tabari, H. Projected changes in compound hot-dry events depend on the dry indicator considered. Commun. Earth Environ. 5, 220 (2024).
Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).
Hosseinzadehtalaei, P., Van Schaeybroeck, B., Termonia, P. & Tabari, H. Identical hierarchy of physical drought types for climate change signals and uncertainty. Weather Clim. Extrem. 41, 100573 (2023).
Batibeniz, F., Hauser, M. & Seneviratne, S. I. Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels. Earth Syst. Dyn. 14, 485–505 (2023).
Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).
Zhang, B., Wang, S., Zscheischler, J. & Moradkhani, H. Higher exposure of poorer people to emerging weather whiplash in a warmer world. Geophys. Res. Lett. 50, e2023GL105640 (2023).
Harrington, L. J. et al. Poorest countries experience earlier anthropogenic emergence of daily temperature extremes. Environ. Res. Lett. 11, 055007 (2016).
Alizadeh, M. R. et al. Increasing heat-stress inequality in a warming climate. Earth’s Future 10, e2021EF002488 (2022).
Wang, Y. et al. Global future population exposure to heatwaves. Environ. Int. 178, 108049 (2023).
Winsemius, H. C. et al. Disaster risk, climate change, and poverty: assessing the global exposure of poor people to floods and droughts. Environ. Dev. Econ. 23, 328–348 (2018).
Zscheischler, J. et al. Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data. Glob. Biogeochem. Cycles 28, 585–600 (2014).
Tabari, H. & Willems, P. Global risk assessment of compound hot-dry events in the context of future climate change and socioeconomic factors. npj Clim. Atmos. Sci. 6, 74 (2023).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 3, M03001 (2011).
Hanasaki, N. et al. An integrated model for the assessment of global water resources–Part 1: model description and input meteorological forcing. Hydrol. Earth Syst. Sci. 12, 1007–1025 (2008).
Best, M. J. et al. The Joint UK Land Environment Simulator (JULES), model description–Part 1: energy and water fluxes. Geosci. Model Dev. 4, 677–699 (2011).
Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).
Takata, K., Emori, S. & Watanabe, T. Development of the minimal advanced treatments of surface interaction and runoff. Glob. Planet. Change 38, 209–222 (2003).
Guimberteau, M. et al. Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin. Geosci. Model Dev. 7, 1115–1136 (2014).
Mueller Schmied, H. et al. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci. 20, 2877–2898 (2016).
Dirmeyer, P. A. et al. GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Am. Meteorol. Soc. 87, 1381–1398 (2006).
Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).
Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).
O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Chang. 42, 153–168 (2017).
Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 112, 3931–3936 (2015).
Ridder, N. N. et al. Global hotspots for the occurrence of compound events. Nat. Commun. 11, 5956 (2020).
Samir, K. C. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).
Wang, J. et al. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nat. Clim. Change 11, 1084–1089 (2021).
Zscheischler, J. & Lehner, F. Attributing compound events to anthropogenic climate change. Bull. Am. Meteorol. Soc. 103, E936–E953 (2022).
Liu, Y. et al. The patterns, magnitude, and drivers of unprecedented 2022 mega-drought in the Yangtze River Basin, China. Environ. Res. Lett. 18, 114006 (2023).
Newman, R. & Noy, I. The global costs of extreme weather that are attributable to climate change. Nat. Commun. 14, 6103 (2023).
Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 13768 (2020).
Naumann, G., Cammalleri, C., Mentaschi, L. & Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Change 11, 485–491 (2021).
Ghanbari, M., Arabi, M., Georgescu, M. & Broadbent, A. M. The role of climate change and urban development on compound dry-hot extremes across US cities. Nat. Commun. 14, 3509 (2023).
Tabari, H., Hosseinzadehtalaei, P., Thiery, W. & Willems, P. Amplified drought and flood risk under future socioeconomic and climatic change. Earth’s Future 9, e2021EF002295 (2021).
Hasegawa, T. et al. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2, 587–595 (2021).
Carrão, H., Naumann, G. & Barbosa, P. Mapping global patterns of drought risk: an empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Glob. Environ. Change 39, 108–124 (2016).
Vollset, S. E. et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. Lancet 396, 1285–1306 (2020).
Tabari, H. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. J. Hydrol. 593, 125932 (2021).
Myhre, G. et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 9, 16063 (2019).
Tabari, H. & Willems, P. Sustainable development substantially reduces the risk of future drought impacts. Commun. Earth Environ. 4, 180 (2023).
Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).
Kopp, R., Easterling, D. R. & Hall, T. Potential surprises–compound extremes and tipping elements. in Climate Science Special Report: Fourth National Climate Assessment (eds Wuebbles, D. W. F. D. J., Hibbard, K. A., Dokken, D. J., Stewart, B. C. & Maycock, T. K.) 411–429 (U.S. Global Change Research Program, 2017).
Kornhuber, K. et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 14, 054002 (2019).
Samir, K. C. & Lutz, W. Demographic scenarios by age, sex and education corresponding to the SSP narratives. Popul. Environ. 35, 243–260 (2014).
Dodson, J. C., Dérer, P., Cafaro, P. & Götmark, F. Population growth and climate change: addressing the overlooked threat multiplier. Sci. Total Environ. 748, 141346 (2020).
Kuddus, M. A., Tynan, E. & McBryde, E. Urbanization: a problem for the rich and the poor?. Public Health Rev. 41, 1–4 (2020).
Smith, G. S., Anjum, E., Francis, C., Deanes, L. & Acey, C. Climate change, environmental disasters, and health inequities: the underlying role of structural inequalities. Curr. Environ. Health Rep. 9, 80–89 (2022).
Putsoane, T., Bhanye, J. I. & Matamanda, A. Extreme weather events and health inequalities: exploring vulnerability and resilience in marginalized communities. Dev. Environ. Sci. 15, 225–248 (2024).
Delica-Willison, Z. & Willison, R. Vulnerability reduction: a task for the vulnerable people themselves. in Mapping Vulnerability: Disasters, Development and People (eds Bankoff, G., Frerks, G. & Hilhorst, D.) (Earthscan Routledge, 2004).
Mirza, M. M. Q. Climate change and extreme weather events: can developing countries adapt?. Clim. Policy 3, 233–248 (2003).
Alvarez, J. L. C., & Rossi-Hansberg, E. The economic geography of global warming. National Bureau of Economic Research, NBER Working Paper Series, Working paper No. 28466 (2021).
Avtar, R., Blickle, K., Chakrabarti, R., Janakiraman, J. & Pinkovskiy, M. Understanding the linkages between climate change and inequality in the United States. Econ. Policy Rev. 29, 1–39 (2023).
Rudnicka, E. et al. The World Health Organization (WHO) approach to healthy ageing. Maturitas 139, 6–11 (2020).
Chen, M. et al. Rising vulnerability of compound risk inequality to ageing and extreme heatwave exposure in global cities. npj Urban Sustain 3, 38 (2023).
Hirsch, A. L., Ridder, N. N., Perkins-Kirkpatrick, S. E. & Ukkola, A. CMIP6 MultiModel evaluation of present-day heatwave attributes. Geophys. Res. Lett. 48, e2021GL095161 (2021).
Chen, X. et al. Changes in global and regional characteristics of heat stress waves in the 21st century. Earth’s Future 8, e2020EF001636 (2020).
Papalexiou, S. M. et al. Probabilistic evaluation of drought in CMIP6 simulations. Earth’s Future 9, e2021EF002150 (2021).
Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).
Zhang, Y., Hao, Z., Zhang, X. & Hao, F. Anthropogenically forced increases in compound dry and hot events at the global and continental scales. Environ. Res. Lett. 17, 024018 (2022).
Ridder, N. N., Ukkola, A. M., Pitman, A. J. & Perkins-Kirkpatrick, S. E. Increased occurrence of high impact compound events under climate change. npj Clim. Atmos. Sci. 5, 3 (2022).
Frieler, K. et al. Assessing the impacts of 1.5°C global warming–simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).
Telteu, C. E. et al. Understanding each other’s models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geosci. Model Dev. 14, 3843–3878 (2021).
Mester, B., Willner, S. N., Frieler, K. & Schewe, J. Evaluation of river flood extent simulated with multiple global hydrological models and climate forcings. Environ. Res. Let. 16, 094010 (2021).
Yang, T. et al. Evaluation and machine learning improvement of global hydrological model-based flood simulations. Environ. Res. Let. 14, 114027 (2019).
Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene–HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).
Coles, S. An Introduction to Statistical Modeling of Extreme Values (Springer, 2001).
Keellings, D. & Moradkhani, H. Spatiotemporal evolution of heat wave severity and coverage across the United States. Geophys. Res. Lett. 47, e2020GL087097 (2020).
Schwingshackl, C., Sillmann, J., Vicedo-Cabrera, A. M., Sandstad, M. & Aunan, K. Heat stress indicators in CMIP6: estimating future trends and exceedances of impact-relevant thresholds. Earth’s Future 9, e2020EF001885 (2021).
Alduchov, O. A. & Eskridge, R. E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 35, 601–609 (1996).
Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).
Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).
Hosseinzadehtalaei, P., Ishadi, N. K., Tabari, H. & Willems, P. Climate change impact assessment on pluvial flooding using a distribution-based bias correction of regional climate model simulations. J. Hydrol. 598, 126239 (2021).
Hao, Z. & AghaKouchak, A. Multivariate standardized drought index: a parametric multi-index model. Adv. Water Resour. 57, 12–18 (2013).
Adeyeri, O. E. et al. Multivariate drought monitoring, propagation, and projection using bias-corrected general circulation models. Earth’s Future 11, e2022EF003303 (2023).
Tabari, H. & Willems, P. Trivariate analysis of changes in drought characteristics in the CMIP6 multimodel ensemble at global warming levels of 1.5, 2, and 3 °C. J. Clim. 35, 5823–5837 (2022).
Jha, S., Gudmundsson, L. & Seneviratne, S. I. Partitioning the uncertainties in compound hot and dry precipitation, soil moisture, and runoff extremes projections in CMIP6. Earth’s Future 11, e2022EF003315 (2023).
Ribeiro, A. F., Russo, A., Gouveia, C. M. & Pires, C. A. Drought-related hot summers: a joint probability analysis in the Iberian Peninsula. Weather Clim. Extrem. 30, 100279 (2020).
Wu, X., Hao, Z., Zhang, X., Li, C. & Hao, F. Evaluation of severity changes of compound dry and hot events in China based on a multivariate multi-index approach. J. Hydrol. 583, 124580 (2020).