Ahn, K.-H., Hariki, A., Lee, K.-W. & Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).
Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).
Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).
Ezawa, M. Third-order and fifth-order nonlinear spin-current generation in g-wave and i-wave altermagnets and perfectly nonreciprocal spin current in f-wave magnets. Phys. Rev. B 111, 125420 (2025).
Yu, Y. et al. Odd-parity magnetism driven by antiferromagnetic exchange. Phys. Rev. Lett. 135, 046701 (2025).
Hirsch, J. E. Spin-split states in metals. Phys. Rev. B 41, 6820–6827 (1990).
Wu, C., Sun, K., Fradkin, E. & Zhang, S.-C. Fermi liquid instabilities in the spin channel. Phys. Rev. B 75, 115103 (2007).
Jung, J., Polini, M. & MacDonald, A. H. Persistent current states in bilayer graphene. Phys. Rev. B 91, 155423 (2015).
Kiselev, E. I., Scheurer, M. S., Wölfle, P. & Schmalian, J. Limits on dynamically generated spin-orbit coupling: absence of l = 1 Pomeranchuk instabilities in metals. Phys. Rev. B 95, 125122 (2017).
Wu, Y.-M., Klein, A. & Chubukov, A. V. Conditions for l = 1 Pomeranchuk instability in a Fermi liquid. Phys. Rev. B 97, 165101 (2018).
Hellenes, A. B. et al. P-wave magnets. Preprint at https://arxiv.org/abs/2309.01607 (2024).
Jungwirth, T. et al. From superfluid 3He to altermagnets. Preprint at https://arxiv.org/abs/2411.00717 (2024).
Ezawa, M. Purely electrical detection of the spin-splitting vector in p-wave magnets based on linear and nonlinear conductivities. Phys. Rev. B 112, 125412 (2025).
Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).
Ezawa, M. Topological insulators and superconductors based on p-wave magnets: electrical control and detection of a domain wall. Phys. Rev. B 110, 165429 (2024).
Gladyshevskii, R. E., Strusievicz, O. R., Cenzual, K. & Parthé, E. Structure of Gd3Ru4Al12, a new member of the EuMg5.2 structure family with minority-atom clusters. Acta Crystallogr. B 49, 474–478 (1993).
Niermann, J. & Jeitschko, W. Ternary rare earth (R) transition metal aluminides R3T4Al12 (T = Ru and Os) with Gd3Ru4Al12 type structure. Z. Anorg. Allg. Chem. 628, 2549–2556 (2002).
Nakamura, S. et al. Spin trimer formation in the metallic compound Gd3Ru4Al12 with a distorted kagome lattice structure. Phys. Rev. B 98, 054410 (2018).
Matsumura, T., Ozono, Y., Nakamura, S., Kabeya, N. & Ochiai, A. Helical ordering of spin trimers in a distorted kagomé lattice of Gd3Ru4Al12 studied by resonant X-ray diffraction. J. Phys. Soc. Jpn 88, 023704 (2019).
Lovesey, S. W. & Collins, S. P. X-ray Scattering and Absorption by Magnetic Materials Oxford Series on Synchrotron Radiation No. 1 (Clarendon Press, Oxford Univ. Press, 1996).
McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).
Okumura, S., Kato, Y. & Motome, Y. Lock-in of a chiral soliton lattice by itinerant electrons. J. Phys. Soc. Jpn 87, 033708 (2018).
Hodt, E. W., Bentmann, H. & Linder, J. Fate of p-wave spin polarization in helimagnets with Rashba spin-orbit coupling. Phys. Rev. B 111, 205416 (2025)
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).
Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).
Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023).
Park, P. et al. Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2. Nat. Commun. 14, 8346 (2023).
Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).
Hedayati, A. A. & Salehi, M. Transverse spin current at normal-metal /p-wave magnet junctions. Phys. Rev. B 111, 035404 (2025).
Álvarez Pari, N. A., Jaeschke-Ubiergo, R., Chakraborty, A., Šmejkal, L. & Sinova, J. Nonrelativistic linear Edelstein effect in helical EuIn2As2. Phys. Rev. B 112, 024404 (2025).
Choy, T. P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin–orbit coupling. Phys. Rev. B 84, 195442 (2011).
Martin, I. & Morpurgo, A. F. Majorana fermions in superconducting helical magnets. Phys. Rev. B 85, 144505 (2012).
Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).
Klinovaja, J., Stano, P., Yazdani, A. & Loss, D. Topological superconductivity and Majorana fermions in RKKY systems. Phys. Rev. Lett. 111, 186805 (2013).
Maeda, K., Lu, B., Yada, K. & Tanaka, Y. Theory of tunneling spectroscopy in unconventional p-wave magnet-superconductor hybrid structures. J. Phys. Soc. Jpn 93, 114703 (2024).
Song, Q. et al. Electrical switching of a p-wave magnet. Nature 642, 64–70 (2025).
Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432–3434 (1998).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Harmon, B., Antropov, V., Liechtenstein, A., Solovyev, I. & Anisimov, V. Calculation of magneto-optical properties for 4f systems: LSDA + Hubbard U results. J. Phys. Chem. Solids 56, 1521–1524 (1995).
Shick, A. B., Liechtenstein, A. I. & Pickett, W. E. Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis. Phys. Rev. B 60, 10763–10769 (1999).
Yamada, R. Dataset for: A metallic p-wave magnet with commensurate spin helix. Zenodo https://doi.org/10.5281/zenodo.17035626 (2025).
Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).
Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge. Nat. Commun. 12, 572 (2021).
Liu, Z. H. et al. Transition from anomalous Hall effect to topological Hall effect in hexagonal non-collinear magnet Mn3Ga. Sci. Rep. 7, 515 (2017).
Hayashi, H. et al. Large anomalous Hall effect observed in the cubic-lattice antiferromagnet Mn3Sb with kagome lattice. Phys. Rev. B 108, 075140 (2023).
Zuniga-Cespedes, B. E. et al. Observation of an anomalous Hall effect in single-crystal Mn3Pt. New J. Phys. 25, 023029 (2023).
Sürgers, C. et al. Anomalous Nernst effect in the noncollinear antiferromagnet Mn5Si3. Commun. Mater. 5, 176 (2024).
Kotegawa, H. et al. Large anomalous Hall effect and unusual domain switching in an orthorhombic antiferromagnetic material NbMnP. npj Quantum Mater. 8, 56 (2023).
Kotegawa, H. et al. Large spontaneous Hall effect with flexible domain control in the antiferromagnetic material TaMnP. Phys. Rev. B 110, 214417 (2024).
Kotegawa, H. et al. Large anomalous Hall conductivity derived from an f-electron collinear antiferromagnetic structure. Phys. Rev. Lett. 133, 106301 (2024).