• Varpe, Ø, Daase, M. & Kristiansen, T. A fish-eye view on the new Arctic lightscape. Ices J. Mar. Sci. 72, 2532–2538 (2015).

    Article 

    Google Scholar
     

  • Tedesco, L., Vichi, M. & Scoccimarro, E. Sea-ice algal phenology in a warmer Arctic. Sci. Adv. 5, eaav4830 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stroeve, J. et al. A multi-sensor and modeling approach for mapping light under sea ice during the ice-growth season. Front. Mar. Sci. 7, (2021).

  • Castellani, G. et al. Shine a light: Under-ice light and its ecological implications in a changing Arctic Ocean. Ambio 51, 307–317 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2022).

  • Flores, H. et al. Sea-ice decline could keep zooplankton deeper for longer. Nat. Clim. Chang. 1–9 (2023).

  • Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Chang. 5, 673–677 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Langbehn, T. J. & Varpe, Ø Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans. Glob. Chang. Biol. 23, 5318–5330 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Notz, D. et al. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations. Geosci. Model Dev. 9, 3427–3446 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ljungström, G., Langbehn, T. J. & Jørgensen, C. Light and energetics at seasonal extremes limit poleward range shifts. Nat. Clim. Chang. 11, 530–536 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N. & Elliott, S. Cice: the los alamos sea ice model documentation and software user’s manual version 4.1 la-cc-06-012. T-3 Fluid Dynamics Group. Los Alamos Natl Lab. 675, 500 (2015).


    Google Scholar
     

  • Séférian, R. et al. An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A). Geoscientific Model Dev. 11, 321–338 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ernst, M., Holst, H., Winter, M. & Altermatt, P. P. SunCalculator: A program to calculate the angular and spectral distribution of direct and diffuse solar radiation. Sol. Energy Mater. Sol. Cells 157, 913–922 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hegglin, M. I. & Shepherd, T. G. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci. 2, 687–691 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Warren, S. G., Brandt, R. E. & Grenfell, T. C. Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow. Appl. Opt. 45, 5320–5334 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Perovich, D. K. & Govoni, J. W. Absorption coefficients of ice from 250 to 400 nm. Geophys. Res. Lett. 18, 1233–1235 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Perovich, D. K. The optical properties of sea ice. Monograph 96-1 US Army Corps of Engineers Cold Regions Research & Engineering Labo- ratory. https://apps.dtic.mil/dtic/tr/fulltext/u2/a310586.pdf (1996).

  • Atsushi Matsuoka, Yannick Huot, Koji Shimada, Sei-Ichi Saitoh, and Marcel Babin. Bio-optical characteristics of the western Arctic Ocean: implications for ocean color algorithms. https://doi.org/10.5589/m07-059.

  • Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Langehaug, H. R. et al. Constraining CMIP6 estimates of Arctic Ocean temperature and salinity in 2025-2055. Front. Mar. Sci. 10, 1211562 (2023).

    Article 

    Google Scholar
     

  • Long, M., Zhang, L., Hu, S. & Qian, S. Multi-aspect assessment of CMIP6 models for Arctic sea ice simulation. J. Clim. 34, 1515–1529 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Watts, M., Maslowski, W., Lee, Y. J., Kinney, J. C. & Osinski, R. A spatial evaluation of Arctic sea ice and regional limitations in CMIP6 historical simulations. J. Clim. 34, 6399–6420 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Henke, M. et al. Assessment of Arctic sea ice and surface climate conditions in nine CMIP6 climate models. Arct. Antarct. Alp. Res. 55, (2023).

  • Lee, Y. J., Watts, M., Maslowski, W., Kinney, J. C. & Osinski, R. Assessment of the pan-Arctic accelerated rate of sea ice decline in CMIP6 historical simulations. J. Clim. 36, 6069–6089 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sherman, K., Belkin, I., Friedland, K. D. & O’Reilly, J. Changing states of North Atlantic large marine ecosystems. Environ. Dev. 7, 46–58 (2013).

    Article 

    Google Scholar
     

  • Lewis, K. M., van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, R. C. et al. Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters. Science 255, 952–959 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tartarotti, B. et al. Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes. Sci. Rep. 7, 4487 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alves, R. N., Mahamed, A. H., Alarcon, J. F., Al Suwailem, A. & Agustí, S. Adverse Effects of Ultraviolet Radiation on Growth, Behavior, Skin Condition, Physiology, and Immune Function in Gilthead Seabream (Sparus aurata). Front. Mar. Sci. 7, 306 (2020).

    Article 

    Google Scholar
     

  • Béland, F., Browman, H. I., Rodriguez, C. A. & St-Pierre, J.-F. Effect of solar ultraviolet radiation (280-400 nm) on the eggs and larvae of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 56, 1058–1067 (1999).


    Google Scholar
     

  • Aune, M. et al. Distribution and ecology of polar cod (Boreogadus saida) in the eastern Barents Sea: A review of historical literature. Mar. Environ. Res. 166, 105262 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403–2412 (2018).

    Article 

    Google Scholar
     

  • Renaud, P. E. et al. Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida? Polar Biol. 35, 401–412 (2012).

    Article 

    Google Scholar
     

  • Bouchard, C. et al. Climate warming enhances polar cod recruitment, at least transiently. Prog. Oceanogr. 156, 121–129 (2017).

    Article 

    Google Scholar
     

  • Cushing, D. H. Plankton Production and Year-class Strength in Fish Populations: an Update of the Match/Mismatch Hypothesis. in Advances in Marine Biology (eds. Blaxter, J. H. S. & Southward, A. J.) vol. 26 249–293 (Academic Press, 1990).

  • Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Climate Res. 33, 271–283 (2007).

  • Puvanendran, V. & Brown, J. A. Effect of light intensity on the foraging and growth of Atlantic cod larvae:interpopulation difference?. Mar. Ecol. Prog. Ser. 167, 207–214 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Kashiwase, H., Ohshima, K. I., Nihashi, S. & Eicken, H. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. Sci. Rep. 7, 8170 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Laurel, B. J., Spencer, M., Iseri, P. & Copeman, L. A. Temperature-dependent growth and behavior of juvenile Arctic cod (Boreogadus saida) and co-occurring North Pacific gadids. Polar Biol. 39, 1127–1135 (2016).

  • Shu, Q. et al. Arctic Ocean Amplification in a warming climate in CMIP6 models. Sci. Adv. 8, eabn9755 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alabia, I. D., García Molinos, J., Hirata, T., Mueter, F. J. & David, C. L. Pan-Arctic marine biodiversity and species co-occurrence patterns under recent climate. Sci. Rep. 13, 4076 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geoffroy, M. et al. The circumpolar impacts of climate change and anthropogenic stressors on Arctic cod (Boreogadus saida) and its ecosystem. Elementa (Wash., DC) 11, (2023).

  • Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cote, D. et al. Forecasted shifts in thermal habitat for cod species in the northwest Atlantic and eastern Canadian arctic. Front. Mar. Sci. 8, (2021).

  • Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. 193, 102555 (2021).

    Article 

    Google Scholar
     

  • Malloy, K. D., Holman, M. A., Mitchell, D. & Detrich, H. W. 3rd Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton. Proc. Natl Acad. Sci. USA 94, 1258–1263 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alves, R. N. & Agustí, S. Effect of ultraviolet radiation (UVR) on the life stages of fish. Rev. Fish. Biol. Fish. 30, 335–372 (2020).

    Article 

    Google Scholar
     

  • Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Duncan, R. J. et al. Biomolecular profiles of Arctic Sea-ice diatoms highlight the role of under-ice light in cellular energy allocation. ISME Commun. 4, ycad010 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, D. W. et al. Pacific cod or tikhookeanskaya treska (Gadus macrocephalus) in the Chukchi Sea during recent warm years: Distribution by life stage and age-0 diet and condition. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 208, 105241 (2023).

    Article 

    Google Scholar
     

  • Bigman, J. S. et al. Predicting Pacific cod thermal spawning habitat in a changing climate. ICES J. Mar. Sci. fsad096 (2023).

  • Wildes, S. et al. Walleye Pollock breach the Bering Strait: A change of the cods in the arctic. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 204, 105165 (2022).

    Article 

    Google Scholar
     

  • Hátún, H. et al. Large bio-geographical shifts in the north-eastern Atlantic Ocean: From the subpolar gyre, via plankton, to blue whiting and pilot whales. Prog. Oceanogr. 80, 149–162 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Payne, M. R. et al. Skilful decadal-scale prediction of fish habitat and distribution shifts. Nat. Commun. 13, 2660 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen, T. et al. Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecol. Appl. 26, 2021–2032 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Fauchald, P., Mauritzen, M. & Gjøsaeter, H. Density-dependent migratory waves in the marine pelagic ecosystem. Ecology 87, 2915–2924 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Levine, R. M. et al. Climate-driven shifts in pelagic fish distributions in a rapidly changing Pacific Arctic. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 208, 105244 (2023).

    Article 

    Google Scholar
     

  • Clement Kinney, J. et al. On the variability of the Bering Sea Cold Pool and implications for the biophysical environment. PLoS One 17, e0266180 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stabeno, P. J. & Bell, S. W. Extreme conditions in the Bering sea (2017–2018): Record-breaking low sea-ice extent. Geophys. Res. Lett. 46, 8952–8959 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Stafford, K. et al. Northward Range Expansion of Subarctic Upper Trophic Level Animals into the Pacific Arctic Region. Oceanography 35, 158–166 (2022).

  • Yool, A. et al. Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations. Geosci. Model Dev. 14, 3437–3472 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, B. et al. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Szekely, T., Gourrion, J., Pouliquen, S. & Reverdin, G. The CORA 5.2 dataset for global in situ temperature and salinity measurements: data description and validation. Ocean Sci. 15, 1601–1614 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lorenz, R. et al. Prospects and caveats of weighting climate models for summer maximum temperature projections over north America. J. Geophys. Res. 123, 4509–4526 (2018).

    Article 

    Google Scholar
     

  • F. et al Pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 3, 884 (2018).

  • Bird, R. E. & Riordan, C. Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres. J. Appl. Meteorol. Climatol. 25, 87–97 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics. (Springer, New York, NY, 2012).

  • Abernathey, R. P. et al. Cloud-Native Repositories for Big Scientific Data. 23, 26–35 (2021).

  • Hill, C., DeLuca, C., Balaji, Suarez, M. & Da Silva, A. The architecture of the Earth System Modeling Framework. Comput. Sci. Eng. 6, 18–28 (2004).

  • Hegglin, M., Kinnison, D., Lamarque, J.-F. & Plummer, D. input4MIPs.CMIP6.ScenarioMIP.UReading.UReading-CCMI-ssp585-1-0. Earth System Grid Federation https://doi.org/10.22033/ESGF/INPUT4MIPS.9544 (2018).

  • Hegglin, M., Kinnison, D., Lamarque, J.-F. & Plummer, D. input4MIPs.CMIP6.ScenarioMIP.UReading.UReading-CCMI-ssp245-1-0. Earth System Grid Federation https://doi.org/10.22033/ESGF/INPUT4MIPS.9542 (2018).

  • Björk, G., Stranne, C. & Borenäs, K. The sensitivity of the arctic ocean sea ice thickness and its dependence on the surface albedo parameterization. J. Clim. 26, 1355–1370 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Collins, W. D. et al. The Community Climate System Model version 3 (CCSM3). J. Clim. 19, 2122–2143 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Letterly, A., Key, J. & Liu, Y. Arctic climate: changes in sea ice extent outweigh changes in snow cover. Cryosphere 12, 3373–3382 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Briegleb, B. P. et al. Scientific Description of the Sea Ice Component in the Community Climate System Model, Version Three. (2004).

  • Budgell, W. P. Numerical simulation of ice-ocean variability in the Barents Sea region: Towards dynamical downscaling. Ocean Dyn. 55, 370–387 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Grenfell, T. C. & Maykut, G. A. The optical properties of ice and snow in the arctic basin. J. Glaciol. 18, 445–463 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Ehn, J. K. & Mundy, C. J. Assessment of light absorption within highly scattering bottom sea ice from under-ice light measurements: Implications for Arctic ice algae primary production. Limnol. Oceanogr. 58, 893–902 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, H. Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?. Limnol. Oceanogr. 34, 1389–1409 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Björnsson, B., Steinarsson, A. & Árnason, T. Growth model for Atlantic cod (Gadus morhua): Effects of temperature and body weight on growth rate. Aquaculture 271, 216–226 (2007).

    Article 

    Google Scholar