• Tabari, H., Madani, K. & Willems, P. The contribution of anthropogenic influence to more anomalous extreme precipitation in Europe. Environ. Res. Lett. 15, 104077 (2020).

    ADS 

    Google Scholar
     

  • Reed, K. A., Wehner, M. F. & Zarzycki, C. M. Attribution of 2020 hurricane season extreme rainfall to human-induced climate change. Nat. Commun. 13, 1905 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, S., Yu, B. & Zhang, Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 9, eabo1638 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmadalipour, A., Moradkhani, H. & Kumar, M. Mortality risk from heat stress expected to hit poorest nations the hardest. Clim. Change 152, 569–579 (2019).

    ADS 

    Google Scholar
     

  • WMO. Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) WMO-No. 1267 (WMO, 2021).

  • Eckstein, D., Künzel, V. & Schäfer, L. Global climate risk index 2021. Germanwatch e.V. https://www.germanwatch.org/sites/default/files/Global%20Climate%20Risk%20Index%202021_2.pdf (2021).

  • Ahmadalipour, A. & Moradkhani, H. Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA). Environ. Int. 117, 215–225 (2018).

    PubMed 

    Google Scholar
     

  • Formetta, G. & Feyen, L. Empirical evidence of declining global vulnerability to climate-related hazards. Glob. Environ. Change 57, 101920 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gazzotti, P. et al. Persistent inequality in economically optimal climate policies. Nat. Commun. 12, 3421 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jay, O. et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 398, 709–724 (2021).

    PubMed 

    Google Scholar
     

  • Callahan, C. W. & Mankin, J. S. Globally unequal effect of extreme heat on economic growth. Sci. Adv. 8, eadd3726 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McElroy, S., Ilango, S., Dimitrova, A., Gershunov, A. & Benmarhnia, T. Extreme heat, preterm birth, and stillbirth: a global analysis across 14 lower-middle income countries. Environ. Int. 158, 106902 (2022).

    PubMed 

    Google Scholar
     

  • Wing, O. E. J. et al. Inequitable patterns of US flood risk in the Anthropocene. Nat. Clim. Change 12, 156–162 (2022).

    ADS 

    Google Scholar
     

  • Hallegatte, S., Fay, M. & Barbier, E. B. Poverty and climate change: Introduction. Environ. Dev. Econ. 23, 217–233 (2018).


    Google Scholar
     

  • Masood, E., Tollefson, J. & Irwin, A. COP27 climate talks: What succeeded, what failed and what’s next. Nature 612, 16–17 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmadalipour, A., Moradkhani, H., Castelletti, A. & Magliocca, N. Future drought risk in Africa: integrating vulnerability, climate change, and population growth. Sci. Total Environ. 662, 672–686 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseinzadehtalaei, P., Termonia, P. & Tabari, H. Projected changes in compound hot-dry events depend on the dry indicator considered. Commun. Earth Environ. 5, 220 (2024).

    ADS 

    Google Scholar
     

  • Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Hosseinzadehtalaei, P., Van Schaeybroeck, B., Termonia, P. & Tabari, H. Identical hierarchy of physical drought types for climate change signals and uncertainty. Weather Clim. Extrem. 41, 100573 (2023).


    Google Scholar
     

  • Batibeniz, F., Hauser, M. & Seneviratne, S. I. Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels. Earth Syst. Dyn. 14, 485–505 (2023).

    ADS 

    Google Scholar
     

  • Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).

    ADS 

    Google Scholar
     

  • Zhang, B., Wang, S., Zscheischler, J. & Moradkhani, H. Higher exposure of poorer people to emerging weather whiplash in a warmer world. Geophys. Res. Lett. 50, e2023GL105640 (2023).

    ADS 

    Google Scholar
     

  • Harrington, L. J. et al. Poorest countries experience earlier anthropogenic emergence of daily temperature extremes. Environ. Res. Lett. 11, 055007 (2016).

    ADS 

    Google Scholar
     

  • Alizadeh, M. R. et al. Increasing heat-stress inequality in a warming climate. Earth’s Future 10, e2021EF002488 (2022).

    ADS 

    Google Scholar
     

  • Wang, Y. et al. Global future population exposure to heatwaves. Environ. Int. 178, 108049 (2023).

    PubMed 

    Google Scholar
     

  • Winsemius, H. C. et al. Disaster risk, climate change, and poverty: assessing the global exposure of poor people to floods and droughts. Environ. Dev. Econ. 23, 328–348 (2018).


    Google Scholar
     

  • Zscheischler, J. et al. Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data. Glob. Biogeochem. Cycles 28, 585–600 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Tabari, H. & Willems, P. Global risk assessment of compound hot-dry events in the context of future climate change and socioeconomic factors. npj Clim. Atmos. Sci. 6, 74 (2023).


    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    ADS 

    Google Scholar
     

  • Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 3, M03001 (2011).

    ADS 

    Google Scholar
     

  • Hanasaki, N. et al. An integrated model for the assessment of global water resources–Part 1: model description and input meteorological forcing. Hydrol. Earth Syst. Sci. 12, 1007–1025 (2008).

    ADS 

    Google Scholar
     

  • Best, M. J. et al. The Joint UK Land Environment Simulator (JULES), model description–Part 1: energy and water fluxes. Geosci. Model Dev. 4, 677–699 (2011).

    ADS 

    Google Scholar
     

  • Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    ADS 

    Google Scholar
     

  • Takata, K., Emori, S. & Watanabe, T. Development of the minimal advanced treatments of surface interaction and runoff. Glob. Planet. Change 38, 209–222 (2003).

    ADS 

    Google Scholar
     

  • Guimberteau, M. et al. Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin. Geosci. Model Dev. 7, 1115–1136 (2014).

    ADS 

    Google Scholar
     

  • Mueller Schmied, H. et al. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci. 20, 2877–2898 (2016).

    ADS 

    Google Scholar
     

  • Dirmeyer, P. A. et al. GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Am. Meteorol. Soc. 87, 1381–1398 (2006).

    ADS 

    Google Scholar
     

  • Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    ADS 

    Google Scholar
     

  • Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

    ADS 

    Google Scholar
     

  • O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

    ADS 

    Google Scholar
     

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Chang. 42, 153–168 (2017).


    Google Scholar
     

  • Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 112, 3931–3936 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ridder, N. N. et al. Global hotspots for the occurrence of compound events. Nat. Commun. 11, 5956 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samir, K. C. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).


    Google Scholar
     

  • Wang, J. et al. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nat. Clim. Change 11, 1084–1089 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Zscheischler, J. & Lehner, F. Attributing compound events to anthropogenic climate change. Bull. Am. Meteorol. Soc. 103, E936–E953 (2022).

    ADS 

    Google Scholar
     

  • Liu, Y. et al. The patterns, magnitude, and drivers of unprecedented 2022 mega-drought in the Yangtze River Basin, China. Environ. Res. Lett. 18, 114006 (2023).

    ADS 

    Google Scholar
     

  • Newman, R. & Noy, I. The global costs of extreme weather that are attributable to climate change. Nat. Commun. 14, 6103 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 13768 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naumann, G., Cammalleri, C., Mentaschi, L. & Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Change 11, 485–491 (2021).

    ADS 

    Google Scholar
     

  • Ghanbari, M., Arabi, M., Georgescu, M. & Broadbent, A. M. The role of climate change and urban development on compound dry-hot extremes across US cities. Nat. Commun. 14, 3509 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabari, H., Hosseinzadehtalaei, P., Thiery, W. & Willems, P. Amplified drought and flood risk under future socioeconomic and climatic change. Earth’s Future 9, e2021EF002295 (2021).

    ADS 

    Google Scholar
     

  • Hasegawa, T. et al. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2, 587–595 (2021).

    PubMed 

    Google Scholar
     

  • Carrão, H., Naumann, G. & Barbosa, P. Mapping global patterns of drought risk: an empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Glob. Environ. Change 39, 108–124 (2016).


    Google Scholar
     

  • Vollset, S. E. et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. Lancet 396, 1285–1306 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabari, H. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. J. Hydrol. 593, 125932 (2021).


    Google Scholar
     

  • Myhre, G. et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 9, 16063 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabari, H. & Willems, P. Sustainable development substantially reduces the risk of future drought impacts. Commun. Earth Environ. 4, 180 (2023).

    ADS 

    Google Scholar
     

  • Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Kopp, R., Easterling, D. R. & Hall, T. Potential surprises–compound extremes and tipping elements. in Climate Science Special Report: Fourth National Climate Assessment (eds Wuebbles, D. W. F. D. J., Hibbard, K. A., Dokken, D. J., Stewart, B. C. & Maycock, T. K.) 411–429 (U.S. Global Change Research Program, 2017).

  • Kornhuber, K. et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 14, 054002 (2019).

    ADS 

    Google Scholar
     

  • Samir, K. C. & Lutz, W. Demographic scenarios by age, sex and education corresponding to the SSP narratives. Popul. Environ. 35, 243–260 (2014).


    Google Scholar
     

  • Dodson, J. C., Dérer, P., Cafaro, P. & Götmark, F. Population growth and climate change: addressing the overlooked threat multiplier. Sci. Total Environ. 748, 141346 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kuddus, M. A., Tynan, E. & McBryde, E. Urbanization: a problem for the rich and the poor?. Public Health Rev. 41, 1–4 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, G. S., Anjum, E., Francis, C., Deanes, L. & Acey, C. Climate change, environmental disasters, and health inequities: the underlying role of structural inequalities. Curr. Environ. Health Rep. 9, 80–89 (2022).

    PubMed 

    Google Scholar
     

  • Putsoane, T., Bhanye, J. I. & Matamanda, A. Extreme weather events and health inequalities: exploring vulnerability and resilience in marginalized communities. Dev. Environ. Sci. 15, 225–248 (2024).


    Google Scholar
     

  • Delica-Willison, Z. & Willison, R. Vulnerability reduction: a task for the vulnerable people themselves. in Mapping Vulnerability: Disasters, Development and People (eds Bankoff, G., Frerks, G. & Hilhorst, D.) (Earthscan Routledge, 2004).

  • Mirza, M. M. Q. Climate change and extreme weather events: can developing countries adapt?. Clim. Policy 3, 233–248 (2003).


    Google Scholar
     

  • Alvarez, J. L. C., & Rossi-Hansberg, E. The economic geography of global warming. National Bureau of Economic Research, NBER Working Paper Series, Working paper No. 28466 (2021).

  • Avtar, R., Blickle, K., Chakrabarti, R., Janakiraman, J. & Pinkovskiy, M. Understanding the linkages between climate change and inequality in the United States. Econ. Policy Rev. 29, 1–39 (2023).


    Google Scholar
     

  • Rudnicka, E. et al. The World Health Organization (WHO) approach to healthy ageing. Maturitas 139, 6–11 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. et al. Rising vulnerability of compound risk inequality to ageing and extreme heatwave exposure in global cities. npj Urban Sustain 3, 38 (2023).


    Google Scholar
     

  • Hirsch, A. L., Ridder, N. N., Perkins-Kirkpatrick, S. E. & Ukkola, A. CMIP6 MultiModel evaluation of present-day heatwave attributes. Geophys. Res. Lett. 48, e2021GL095161 (2021).

    ADS 

    Google Scholar
     

  • Chen, X. et al. Changes in global and regional characteristics of heat stress waves in the 21st century. Earth’s Future 8, e2020EF001636 (2020).

    ADS 

    Google Scholar
     

  • Papalexiou, S. M. et al. Probabilistic evaluation of drought in CMIP6 simulations. Earth’s Future 9, e2021EF002150 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).

    ADS 

    Google Scholar
     

  • Zhang, Y., Hao, Z., Zhang, X. & Hao, F. Anthropogenically forced increases in compound dry and hot events at the global and continental scales. Environ. Res. Lett. 17, 024018 (2022).

    ADS 

    Google Scholar
     

  • Ridder, N. N., Ukkola, A. M., Pitman, A. J. & Perkins-Kirkpatrick, S. E. Increased occurrence of high impact compound events under climate change. npj Clim. Atmos. Sci. 5, 3 (2022).


    Google Scholar
     

  • Frieler, K. et al. Assessing the impacts of 1.5°C global warming–simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

    ADS 

    Google Scholar
     

  • Telteu, C. E. et al. Understanding each other’s models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geosci. Model Dev. 14, 3843–3878 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Mester, B., Willner, S. N., Frieler, K. & Schewe, J. Evaluation of river flood extent simulated with multiple global hydrological models and climate forcings. Environ. Res. Let. 16, 094010 (2021).


    Google Scholar
     

  • Yang, T. et al. Evaluation and machine learning improvement of global hydrological model-based flood simulations. Environ. Res. Let. 14, 114027 (2019).


    Google Scholar
     

  • Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene–HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    ADS 

    Google Scholar
     

  • Coles, S. An Introduction to Statistical Modeling of Extreme Values (Springer, 2001).

  • Keellings, D. & Moradkhani, H. Spatiotemporal evolution of heat wave severity and coverage across the United States. Geophys. Res. Lett. 47, e2020GL087097 (2020).

    ADS 

    Google Scholar
     

  • Schwingshackl, C., Sillmann, J., Vicedo-Cabrera, A. M., Sandstad, M. & Aunan, K. Heat stress indicators in CMIP6: estimating future trends and exceedances of impact-relevant thresholds. Earth’s Future 9, e2020EF001885 (2021).

    ADS 

    Google Scholar
     

  • Alduchov, O. A. & Eskridge, R. E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 35, 601–609 (1996).

    ADS 

    Google Scholar
     

  • Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    ADS 

    Google Scholar
     

  • Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Hosseinzadehtalaei, P., Ishadi, N. K., Tabari, H. & Willems, P. Climate change impact assessment on pluvial flooding using a distribution-based bias correction of regional climate model simulations. J. Hydrol. 598, 126239 (2021).


    Google Scholar
     

  • Hao, Z. & AghaKouchak, A. Multivariate standardized drought index: a parametric multi-index model. Adv. Water Resour. 57, 12–18 (2013).

    ADS 

    Google Scholar
     

  • Adeyeri, O. E. et al. Multivariate drought monitoring, propagation, and projection using bias-corrected general circulation models. Earth’s Future 11, e2022EF003303 (2023).

    ADS 

    Google Scholar
     

  • Tabari, H. & Willems, P. Trivariate analysis of changes in drought characteristics in the CMIP6 multimodel ensemble at global warming levels of 1.5, 2, and 3 °C. J. Clim. 35, 5823–5837 (2022).

    ADS 

    Google Scholar
     

  • Jha, S., Gudmundsson, L. & Seneviratne, S. I. Partitioning the uncertainties in compound hot and dry precipitation, soil moisture, and runoff extremes projections in CMIP6. Earth’s Future 11, e2022EF003315 (2023).

    ADS 

    Google Scholar
     

  • Ribeiro, A. F., Russo, A., Gouveia, C. M. & Pires, C. A. Drought-related hot summers: a joint probability analysis in the Iberian Peninsula. Weather Clim. Extrem. 30, 100279 (2020).


    Google Scholar
     

  • Wu, X., Hao, Z., Zhang, X., Li, C. & Hao, F. Evaluation of severity changes of compound dry and hot events in China based on a multivariate multi-index approach. J. Hydrol. 583, 124580 (2020).


    Google Scholar