• Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2010).

  • Chandran, A. Biopharma foresees a ‘quantum advantage’: they could be right. Nat. Biotechnol. 42, 690–692 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kissman, E. N. et al. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 631, 37–48 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Buller, R. et al. From nature to industry: harnessing enzymes for biocatalysis. Science 382, eadh8615 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schumacher, B. Quantum coding. Phys. Rev. A 51, 2738–2747 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Besedin, I. et al. Realizing lattice surgery on two distance–three repetition codes with superconducting qubits. Preprint at https://doi.org/10.48550/arXiv.2501.04612 (2025).

  • Matsunaga, H. & Ho, L. B. Detecting and protecting entanglement through nonlocality, variational entanglement witness and nonlocal measurements. Phys. Rev. Res. 7, 013239 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem. Preprint at https://doi.org/10.48550/arXiv.quant-ph/9511026 (1995).

  • Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

    Article 

    Google Scholar
     

  • Bogobowicz, M. et al. Quantum Technology Sees Record Investments, Progress on Talent Gap (McKinsey, 2023); https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/quantum-technology-sees-record-investments-progress-on-talent-gap

  • Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

    Article 

    Google Scholar
     

  • Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article 

    Google Scholar
     

  • Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

    Article 

    Google Scholar
     

  • Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao, X.-H. et al. Leapfrogging Sycamore: harnessing 1432 GPUs for 7× faster quantum random circuit sampling. Natl Sci. Rev. 12, nwae317 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Ball, P. Physicists in China challenge Google’s ‘quantum advantage’. Nature 588, 380 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Acharya, R. et al. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).

    Article 

    Google Scholar
     

  • King, A. D. et al. Beyond-classical computation in quantum simulation. Science 388, 199–204 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pal, S., Bhattacharya, M., Lee, S.-S. & Chakraborty, C. Quantum computing in the next-generation computational biology landscape: from protein folding to molecular dynamics. Mol. Biotechnol. 66, 163–178 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Doga, H. et al. A perspective on protein structure prediction using quantum computers. J. Chem. Theory Comput. 20, 3359–3378 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nałęcz-Charkiewicz, K., Charkiewicz, K. & Nowak, R. M. Quantum computing in bioinformatics: a systematic review mapping. Brief. Bioinform. 25, bbae391 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Prospects of quantum computing for molecular sciences. Mater. Theory 6, 11 (2022).

    Article 

    Google Scholar
     

  • Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Grimsley, G. R. et al. Increasing protein stability by altering long-range coulombic interactions. Protein Sci. 8, 1843–1849 (1999).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Robert, A., Barkoutsos, P. K., Woerner, S. & Tavernelli, I. Resource-efficient quantum algorithm for protein folding. npj Quantum Inf. 7, 38 (2021).

    Article 

    Google Scholar
     

  • Ettenhuber, P. et al. Calculating the energy profile of an enzymatic reaction on a quantum computer. J. Chem. Theory Comput. 21, 3493–3503 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Malone, F. D. et al. Towards the simulation of large scale protein–ligand interactions on NISQ-era quantum computers. Chem. Sci. 13, 3094–3108 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Aramyan, S., McGregor, K., Sandeep, S. & Haczku, A. SP-A binding to the SARS-CoV-2 spike protein using hybrid quantum and classical in silico modeling and molecular pruning by quantum approximate optimization algorithm (QAOA) based MaxCut with ZDOCK. Front. Immunol 13, 945317 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pamidimukkala, J. V. et al. Protein structure prediction with high degrees of freedom in a gate-based quantum computer. J. Chem. Theory Comput. 20, 10223–10234 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Papalitsas, C. et al. Quantum approximate optimization algorithms for molecular docking. Preprint at https://doi.org/10.48550/arXiv.2503.04239 (2025).

  • Chagneau, A., Massaoudi, Y., Derbali, I. & Yahiaoui, L. Quantum algorithm for bioinformatics to compute the similarity between proteins. IET Quantum Commun. 5, 417–442 (2024).

    Article 

    Google Scholar
     

  • Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fox, D. M., Branson, K. M. & Walker, R. C. mRNA codon optimization with quantum computers. PLoS ONE 16, e0259101 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Khatami, M. H., Mendes, U. C., Wiebe, N. & Kim, P. M. Gate-based quantum computing for protein design. PLoS Comput. Biol. 19, e1011033 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing (ed. Miller, G. L.) 212–219 (Association for Computing Machinery, 1996); https://doi.org/10.1145/237814.237866

  • Allcock, J. et al. The prospects of Monte Carlo antibody loop modelling on a fault-tolerant quantum computer. Front. Drug Discov 2, 908870 (2022).

    Article 

    Google Scholar
     

  • McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, P., Chen, Y., Lu, H. & Zhong, W. Bisection Grover’s search algorithm and its application in analyzing CITE-seq data. J. Am. Stat. Assoc. 120, 52–63 (2024).

    Article 

    Google Scholar
     

  • Kundu, D. et al. Application of quantum tensor networks for protein classification. In Proc. Great Lakes Symposium on VLSI 2024 (eds Partin-Vaisband, I. et al.) 132–137 (Association for Computing Machinery, 2024); https://doi.org/10.1145/3649476.3658701

  • Ghazi Vakili, M. et al. Quantum-computing-enhanced algorithm unveils potential KRAS inhibitors. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02526-3 (2025).

  • Kouba, P. et al. Machine learning-guided protein engineering. ACS Catal. 13, 13863–13895 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jayakumar, A. et al. Quantum algorithm implementations for beginners. ACM Trans. Quantum Comput 3, 18:1–18:92 (2022).


    Google Scholar
     

  • Protein Engineering Portal (Loschmidt Laboratories); https://loschmidt.chemi.muni.cz/portal/

  • Marques, S. M. et al. Caver Web 2.0: analysis of tunnels and ligand transport in dynamic ensembles of proteins. Nucl. Acids Res. 53, W132–W142 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollingsworth, S. A. & Dror, R. O. Molecular dynamics simulation for all. Neuron 99, 1129–1143 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gerlt, J. A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta Proteins Proteom. 1854, 1019–1037 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hon, J. et al. EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucl. Acids Res. 48, W104–W109 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hon, J. et al. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics 37, 23–28 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Planas-Iglesias, J. et al. AggreProt: a web server for predicting and engineering aggregation prone regions in proteins. Nucl. Acids Res. 52, W159–W169 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasina, M. et al. Advanced database mining of efficient haloalkane dehalogenases by sequence and structure bioinformatics and microfluidics. Chem. Catal. 2, 2704–2725 (2022).

    CAS 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Babbush, R. et al. Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods. Nat. Commun. 14, 4058 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Musil, M. et al. FireProtASR: a web server for fully automated ancestral sequence reconstruction. Brief. Bioinform. 22, bbaa337 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ross, C. M., Foley, G., Boden, M. & Gillam, E. M. J. in Enzyme Engineering: Methods and Protocols (eds Magnani, F. et al.) 85–110 (Springer, 2022); https://doi.org/10.1007/978-1-0716-1826-4_6

  • Onodera, W., Hara, N., Aoki, S., Asahi, T. & Sawamura, N. Phylogenetic tree reconstruction via graph cut presented using a quantum-inspired computer. Mol. Phylogenet. Evol. 178, 107636 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. N. J. Phys. 18, 023023 (2016).

    Article 

    Google Scholar
     

  • Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vavra, O. et al. CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics 35, 4986–4993 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Horn, D. & Gottlieb, A. Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys. Rev. Lett. 88, 018702 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Ollitrault, P. J., Miessen, A. & Tavernelli, I. Molecular quantum dynamics: a quantum computing perspective. Acc. Chem. Res. 54, 4229–4238 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Grimsley, H. R., Economou, S. E., Barnes, E. & Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10, 3007 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng, X., Kazemi, M., Planas, F. & Himo, F. Modeling enzymatic enantioselectivity using quantum chemical methodology. ACS Catal. 10, 6430–6449 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Goings, J. J. et al. Reliably assessing the electronic structure of cytochrome P450 on today’s classical computers and tomorrow’s quantum computers. Proc. Natl Acad. Sci. USA 119, e2203533119 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nguyen, T. D., Chen, Y.-I., Chen, L. H. & Yeh, H.-C. Recent advances in single-molecule tracking and imaging techniques. Annu. Rev. Anal. Chem. 16, 253–284 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vasina, M. et al. In-depth analysis of biocatalysts by microfluidics: an emerging source of data for machine learning. Biotechnol. Adv. 66, 108171 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rapp, J. T., Bremer, B. J. & Romero, P. A. Self-driving laboratories to autonomously navigate the protein fitness landscape. Nat. Chem. Eng. 1, 97–107 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, H. et al. Brain organoid reservoir computing for artificial intelligence. Nat. Electron. 6, 1032–1039 (2023).

    Article 

    Google Scholar
     

  • Lu, C. et al. The AI Scientist: towards fully automated open-ended scientific discovery. Preprint at https://doi.org/10.48550/arXiv.2408.06292 (2024).

  • Google Quantum AI; https://quantumai.google/

  • Quantum Roadmap; https://www.ibm.com/roadmaps/quantum/www.ibm.com/roadmaps/quantum