• Hughes, D. C., Ellefsen, S. & Baar, K. Adaptations to endurance and strength training. Cold Spring Harb. Perspect. Med. 8, a029769 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17, 162–184 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoppeler, H. Molecular networks in skeletal muscle plasticity. J. Exp. Biol. 219, 205–213 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ramazi, S. & Zahiri, J. Posttranslational modifications in proteins: resources, tools and prediction methods. Database 2021, baab012 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graves, J. D. & Krebs, E. G. Protein phosphorylation and signal transduction. Pharmacol. Ther. 82, 111–121 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacInnis, M. J., McGlory, C., Gibala, M. J. & Phillips, S. M. Investigating human skeletal muscle physiology with unilateral exercise models: when one limb is more powerful than two. Appl. Physiol. Nutr. Metab. 42, 563–570 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Steinert, N. D. et al. Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function. Cell Rep. 34, 108796 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. J. et al. PhosR enables processing and functional analysis of phosphoproteomic data. Cell Rep. 34, 108771 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blazev, R. et al. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab. 34, 1561–1577.e9 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Futschik, M. E. & Carlisle, B. Noise-robust soft clustering of gene expression time-course data. J. Bioinform. Comput. Biol. 3, 965–988 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox, J. & Mann, M. 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics 13, S12 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiredja, D. D., Koyuturk, M. & Chance, M. R. The KSEA app: a web-based tool for kinase activity inference from quantitative phosphoproteomics. Bioinformatics 33, 3489–3491 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hornbeck, P. V. et al. 15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res. 47, D433–D441 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horn, H. et al. KinomeXplorer: an integrated platform for kinome biology studies. Nat. Methods 11, 603–604 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rada, C. C. et al. Heat shock protein 27 activity is linked to endothelial barrier recovery after proinflammatory GPCR-induced disruption. Sci. Signal. 14, eabc1044 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J. & Manning, B. D. The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179–190 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacobs, B. L. et al. Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling. J. Biol. Chem. 292, 6987–6997 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow, L. S. et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 18, 273–289 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szklarczyk, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Canovas, B. & Nebreda, A. R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 22, 346–366 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuadrado, A. & Nebreda, A. R. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429, 403–417 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiryaev, A. & Moens, U. Mitogen-activated protein kinase p38 and MK2, MK3 and MK5: Menage a trois or menage a quatre? Cell. Signal. 22, 1185–1192 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Teran, B. et al. p38γ and δ promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. Nat. Commun. 7, 10477 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keren, A., Tamir, Y. & Bengal, E. The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol. Cell. Endocrinol. 252, 224–230 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roux, P. P. & Topisirovic, I. Signaling pathways involved in the regulation of mRNA translation. Mol. Cell. Biol. 38, e00070-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, J., Wang, X., Jiang, Y., Ulevitch, R. J. & Lin, S. Identification and characterization of a predominant isoform of human MKK3. FEBS Lett. 403, 19–22 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soni, S., Anand, P. & Padwad, Y. S. MAPKAPK2: the master regulator of RNA-binding proteins modulates transcript stability and tumor progression. J. Exp. Clin. Cancer Res. 38, 121 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, J. S. et al. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. FASEB J. 33, 4021–4034 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burd, N. A. et al. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J. Physiol. 588, 3119–3130 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burd, N. A. et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE 5, e12033 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Massett, M. P., Matejka, C. & Kim, H. Systematic review and meta-analysis of endurance exercise training protocols for mice. Front. Physiol. 12, 782695 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murach, K. A., McCarthy, J. J., Peterson, C. A. & Dungan, C. M. Making mice mighty: recent advances in translational models of load-induced muscle hypertrophy. J. Appl Physiol. 129, 516–521 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, W. G. et al. Weight pulling: a novel mouse model of human progressive resistance exercise. Cells 10, 2459 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez-Castelao, B. et al. Cell-type-specific metabolic labeling of nascent proteomes in vivo. Nat. Biotechnol. 35, 1196–1201 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X., Destrument, A. & Tournier, C. Physiological roles of MKK4 and MKK7: insights from animal models. Biochim. Biophys. Acta 1773, 1349–1357 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brancho, D. et al. Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 17, 1969–1978 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Remy, G. et al. Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell. Signal. 22, 660–667 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodman, C. A. et al. Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J. 25, 1028–1039 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuroyanagi, G. et al. Unphosphorylated HSP27 (HSPB1) regulates the translation initiation process via a direct association with eIF4E in osteoblasts. Int. J. Mol. Med. 36, 881–889 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stokoe, D., Engel, K., Campbell, D. G., Cohen, P. & Gaestel, M. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett. 313, 307–313 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golkowski, M. et al. Multiplexed kinase interactome profiling quantifies cellular network activity and plasticity. Mol. Cell 83, 803–818.e8 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanov, A. A. et al. OncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc. Oncogene 36, 5852–5860 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, T. et al. c-Myc overexpression increases ribosome biogenesis and protein synthesis independent of mTORC1 activation in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 321, E551–E559 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. & Nicolet, J. Specificity models in MAPK cascade signaling. FEBS Open Bio. 13, 1177–1192 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mordente, K., Ryder, L. & Bekker-Jensen, S. Mechanisms underlying sensing of cellular stress signals by mammalian MAP3 kinases. Mol. Cell 84, 142–155 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nordgaard, C. et al. ZAKbeta is activated by cellular compression and mediates contraction-induced MAP kinase signaling in skeletal muscle. EMBO J. 41, e111650 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hindi, S. M. et al. TAK1 regulates skeletal muscle mass and mitochondrial function. JCI Insight 3, e98441 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, A. & Kumar, A. Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy. Nat. Commun. 13, 2201 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, C. et al. Increased protein intake derived from leucine-enriched protein enhances the integrated myofibrillar protein synthetic response to short-term resistance training in untrained men and women: a 4-day randomized controlled trial. Appl. Physiol. Nutr. Metab. 47, 1104–1114 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • National Research Council (US) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended Dietary Allowances 10th edn (National Academies Press, 1989).

  • Verdijk, L. B., van Loon, L., Meijer, K. & Savelberg, H. H. One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans. J. Sports Sci. 27, 59–68 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Thomas, A. C. Q. et al. Short-term aerobic conditioning prior to resistance training augments muscle hypertrophy and satellite cell content in healthy young men and women. FASEB J. 36, e22500 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burd, N. A. et al. Validation of a single biopsy approach and bolus protein feeding to determine myofibrillar protein synthesis in stable isotope tracer studies in humans. Nutr. Metab. 8, 15 (2011).

    Article 
    CAS 

    Google Scholar
     

  • McGlory, C. et al. Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men. Physiol. Rep. 4, e12715 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potts, G. K. et al. A map of the phosphoproteomic alterations that occur after a bout of maximal-intensity contractions. J. Physiol. 595, 5209–5226 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenger, C. D., Phanstiel, D. H., Lee, M. V., Bailey, D. J. & Coon, J. J. COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA. Proteomics 11, 1064–1074 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taus, T. et al. Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10, 5354–5362 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (2018).

    Article 

    Google Scholar
     

  • Munk, S., Refsgaard, J. C., Olsen, J. V. & Jensen, L. J. From phosphosites to kinases. Methods Mol. Biol. 1355, 307–321 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Freire, M. et al. The human skeletal muscle proteome project: a reappraisal of the current literature. J. Cachexia Sarcopenia Muscle 8, 5–18 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Deshmukh, A. S. et al. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol. Cell. Proteomics 14, 841–853 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolan, G. P., Fiering, S., Nicolas, J. F. & Herzenberg, L. A. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-d-galactosidase activity after transduction of Escherichia coli lacZ. Proc. Natl Acad. Sci. USA 85, 2603–2607 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, J. S., Anderson, G. B., Dooley, M. S. & Hornberger, T. A. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Dis. Models Mech. 8, 1059–1069 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).

    Article 

    Google Scholar
     

  • Hanks, S. K. & Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar