• Ziaeian, B. & Fonarow, G. C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 13, 368–378 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin, M. G. et al. Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure. Nat. Commun. 13, 6914 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aragam, K. G. et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat. Genet. 54, 1803–1815 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Povysil, G. et al. Assessing the role of rare genetic variation in patients with heart failure. JAMA Cardiol. 6, 379–386 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Dellefave-Castillo, L. M. et al. Assessment of the diagnostic yield of combined cardiomyopathy and arrhythmia genetic testing. JAMA Cardiol. 7, 966–974 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanscombe, K. B. et al. The genetic case for cardiorespiratory fitness as a clinical vital sign and the routine prescription of physical activity in healthcare. Genome Med. 13, 180 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, T.-K. et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N = 112 117). Mol. Psychiatry 22, 1376–1384 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evangelou, E. et al. New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders. Nat. Hum. Behav. 3, 950–961 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saunders, G. R. B. et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 612, 720–724 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan-ancestry genetic analysis of the UK Biobank. Pan-UK Biobank https://pan.ukbb.broadinstitute.org/ (2024).

  • Timpson, N. J. et al. Genetic variation at the SLC23A1 locus is associated with circulating concentrations of l-ascorbic acid (vitamin C): evidence from 5 independent studies with >15,000 participants. Am. J. Clin. Nutr. 92, 375–382 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Aung, N. et al. Genome-wide association analysis reveals insights into the genetic architecture of right ventricular structure and function. Nat. Genet. 54, 783–791 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, A. F. et al. Druggable proteins influencing cardiac structure and function: Implications for heart failure therapies and cancer cardiotoxicity. Sci. Adv. 9, eadd4984 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tcheandjieu, C. et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat. Med. 28, 1679–1692 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50, 559–571 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Z. et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J. Allergy Clin. Immunol. 145, 537–549 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jarick, I. et al. Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a genome-wide analysis. Hum. Mol. Genet. 20, 840–852 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Aung, N. et al. Genome-wide analysis of left ventricular maximum wall thickness in the UK Biobank cohort reveals a shared genetic background with hypertrophic cardiomyopathy. Circ. Genomic Precis. Med. 16, e003716 (2023).

    Article 

    Google Scholar
     

  • Villard, E. et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur. Heart J. 32, 1065–1076 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ussher, J. R. et al. Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction. Cell Metab. 27, 450–460 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53, 840–860 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oikonomou, E. K. & Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16, 83–99 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Park, J. et al. A genome-first approach to rare variants in hypertrophic cardiomyopathy genes MYBPC3 and MYH7 in a medical biobank. Hum. Mol. Genet. 31, 827–837 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • McKenna, W. J. & Judge, D. P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 18, 22–36 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ingles, J. et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ. Genom. Precis. Med. 12, e002460 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jordan, E. et al. Evidence-based assessment of genes in dilated cardiomyopathy. Circulation 144, 7–19 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • James, C. A. et al. International evidence based reappraisal of genes associated with arrhythmogenic right ventricular cardiomyopathy using the Clinical Genome Resource framework. Circ. Genom. Precis. Med. 14, e003273 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, M. A. et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet. Med. 20, 351–359 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toepfer, C. N. et al. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation 141, 828–842 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguib, Y. et al. New variant with a previously unrecognized mechanism of pathogenicity in hypertrophic cardiomyopathy. Circulation 144, 754–757 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rethy, L. et al. Trends in the prevalence of self-reported heart failure by race/ethnicity and age from 2001 to 2016. JAMA Cardiol. 5, 1425–1429 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes. Nature 614, 492–499 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindgren, M. P. et al. A Swedish nationwide adoption study of the heritability of heart failure. JAMA Cardiol. 3, 703–710 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szklarczyk, D. et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jordan, E. et al. Genetic architecture of dilated cardiomyopathy in individuals of African and European ancestry. JAMA 330, 432–441 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tcheandjieu, C. & Cappola, T. P. Diversifying the genetic landscape of heart disease. JAMA 330, 415–416 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, K. et al. Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals. Nat. Genet. 55, 549–558 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, K. et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 627, 347–357 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joseph, J. et al. Genetic architecture of heart failure with preserved versus reduced ejection fraction. Nat. Commun. 13, 7753 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daghlas, I. et al. Genetic evidence for repurposing of GLP1R (Glucagon‐Like Peptide‐1 Receptor) agonists to prevent heart failure. J. Am. Heart Assoc. 10, e020331 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Packer, M. et al. Tirzepatide for heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 392, 427–437 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, Y. et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat. Rev. Cardiol. 17, 585–607 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyle, J. J. et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ. Res. 110, 20–33 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat. Commun. 11, 3635 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tadros, R. et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat. Genet. 53, 128–134 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, S. H. et al. Monogenic and polygenic contributions to atrial fibrillation risk. Circ. Res. 126, 200–209 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lam, C. S. P. et al. Sex differences in heart failure. Eur. Heart J. 40, 3859–3868c (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Privé, F., Aschard, H., Ziyatdinov, A. & Blum, M. G. B. Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr. Bioinformatics 34, 2781–2787 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet 26, 3639–3650 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet. 15, e1007889 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leeuw de, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article 

    Google Scholar
     

  • Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foley, C. N. et al. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits. Nat. Commun. 12, 764 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedersen, T. L. tidygraph: a tidy API for graph manipulation. CRAN https://cran.r-project.org/web/packages/tidygraph/tidygraph.pdf (2024).

  • Verma, A. et al. The Penn Medicine BioBank: towards a genomics-enabled learning healthcare system to accelerate precision medicine in a diverse population. J. Pers. Med. 12, 1974 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ioannidis, N. M. et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, W. et al. SAIGE-GENE+ improves the efficiency and accuracy of set-based rare variant association tests. Nat. Genet. 54, 1466–1469 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiner, D. J., Gazal, S., Robinson, E. B. & O’Connor, L. J. Partitioning gene-mediated disease heritability without eQTLs. Am. J. Hum. Genet. 109, 405–416 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, C. et al. Performance metrics for the comparative analysis of clinical risk prediction models employing machine learning. Circ. Cardiovasc. Qual. Outcomes 14, e007526 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, D. S. M et al. PMBB QC scripts. Zenodo https://doi.org/10.5281/zenodo.14170696 (2024).

  • Verma, A. et al. Diversity and scale: genetic architecture of 2068 traits in the VA Million Veteran Program. Science 385, eadj1182 (2024).

    Article 
    PubMed 

    Google Scholar