• Tanner, J. M. A History of the Study of Human Growth (Cambridge Univ. Press, 1981).

  • Galton, F. Regression towards mediocrity in hereditary stature. J. R. Anthropol. Inst. 5, 329–348 (1885).


    Google Scholar
     

  • Rimoin, D. L., Merimee, T. J., Rabinowitz, D. & McKusick, V. A. Genetic aspects of clinical endocrinology. Recent Prog. Horm. Res. 24, 365–437 (1968).

    CAS 
    PubMed 

    Google Scholar
     

  • Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918).

    Article 

    Google Scholar
     

  • Polderman, T. J. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silventoinen, K. et al. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 6, 399–408 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Perkins, J. M., Subramanian, S. V., Davey Smith, G. & Ozaltin, E. Adult height, nutrition, and population health. Nutr. Rev. 74, 149–165 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kannam, J. P., Levy, D., Larson, M. & Wilson, P. W. Short stature and risk for mortality and cardiovascular disease events. The Framingham Heart Study. Circulation 90, 2241–2247 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Njolstad, I., Arnesen, E. & Lund-Larsen, P. G. Sex differences in risk factors for clinical diabetes mellitus in a general population: a 12-year follow-up of the Finnmark Study. Am. J. Epidemiol. 147, 49–58 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, F. Y. et al. Adult height and risk of 50 diseases: a combined epidemiological and genetic analysis. BMC Med. 16, 187 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Raghavan, S. et al. A multi-population phenome-wide association study of genetically-predicted height in the Million Veteran Program. PLoS Genet. 18, e1010193 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tripaldi, R., Stuppia, L. & Alberti, S. Human height genes and cancer. Biochim. Biophys. Acta 1836, 27–41 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Albanes, D., Jones, D. Y., Schatzkin, A., Micozzi, M. S. & Taylor, P. R. Adult stature and risk of cancer. Cancer Res. 48, 1658–1662 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022). The most comprehensive map to date of genome-wide association study signals associated with height.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Unger, S. et al. Nosology of genetic skeletal disorders: 2023 revision. Am. J. Med. Genet. A 191, 1164–1209 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ranke, M. B. & Wit, J. M. Growth hormone — past, present and future. Nat. Rev. Endocrinol. 14, 285–300 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amselem, S. et al. Laron dwarfism and mutations of the growth hormone-receptor gene. N. Engl. J. Med. 321, 989–995 (1989). Together with Godowski et al. (1989), the first reports linking variants in genes encoding the growth hormone pathway with monogenic forms of short stature.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Godowski, P. J. et al. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc. Natl Acad. Sci. USA 86, 8083–8087 (1989). Together with Amselem et al. (1989), the first reports linking variants in genes encoding the growth hormone pathway with monogenic forms of short stature.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Begemann, M. et al. Paternally inherited IGF2 mutation and growth restriction. N. Engl. J. Med. 373, 349–356 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Domene, H. M. et al. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N. Engl. J. Med. 350, 570–577 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kofoed, E. M. et al. Growth hormone insensitivity associated with a STAT5b mutation. N. Engl. J. Med. 349, 1139–1147 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woods, K. A., Camacho-Hubner, C., Savage, M. O. & Clark, A. J. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N. Engl. J. Med. 335, 1363–1367 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dattani, M. T. & Malhotra, N. A review of growth hormone deficiency. Paediatr. Child Health 29, 285–292 (2019).

    Article 

    Google Scholar
     

  • Guevara-Aguirre, J. et al. Despite higher body fat content, Ecuadorian subjects with Laron syndrome have less insulin resistance and lower incidence of diabetes than their relatives. Growth Horm. IGF Res. 28, 76–78 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Laron, Z. & Kauli, R. Fifty seven years of follow-up of the Israeli cohort of Laron Syndrome patients — from discovery to treatment. Growth Horm. IGF Res. 28, 53–56 (2016). This paper describes a comprehensive survey of individuals with Laron syndrome, including apparent protection from cancer.

    Article 
    PubMed 

    Google Scholar
     

  • Savarirayan, R. et al. Growth parameters in children with achondroplasia: a 7-year, prospective, multinational, observational study. Genet. Med. 24, 2444–2452 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harada, D. et al. Final adult height in long-term growth hormone-treated achondroplasia patients. Eur. J. Pediatr. 176, 873–879 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rousseau, F. et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371, 252–254 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savarirayan, R. et al. International consensus statement on the diagnosis, multidisciplinary management and lifelong care of individuals with achondroplasia. Nat. Rev. Endocrinol. 18, 173–189 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cheung, M. S. et al. Growth reference charts for children with hypochondroplasia. Am. J. Med. Genet. A 194, 243–252 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • French, T. & Savarirayan, R. in GeneReviews® (eds Adam, M. P. et al.) (Univ. of Washington, Seattle, 1993).

  • Kant, S. G. et al. A novel variant of FGFR3 causes proportionate short stature. Eur. J. Endocrinol. 172, 763–770 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mamada, M. et al. Prevalence of mutations in the FGFR3 gene in individuals with idiopathic short stature. Clin. Pediatr. Endocrinol. 15, 61–64 (2006).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Costantini, A., Guasto, A. & Cormier-Daire, V. TGF-β and BMP signaling pathways in skeletal dysplasia with short and tall stature. Annu. Rev. Genomics Hum. Genet. 24, 225–253 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M., Wu, S., Chen, W. & Li, Y. P. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res. 34, 101–123 (2024).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bartels, C. F. et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am. J. Hum. Genet. 75, 27–34 (2004).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hisado-Oliva, A. et al. Mutations in C-natriuretic peptide (NPPC): a novel cause of autosomal dominant short stature. Genet. Med. 20, 91–97 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasques, G. A. et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature in patients initially classified as idiopathic short stature. J. Clin. Endocrinol. Metab. 98, E1636–E1644 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hannema, S. E. et al. An activating mutation in the kinase homology domain of the natriuretic peptide receptor-2 causes extremely tall stature without skeletal deformities. J. Clin. Endocrinol. Metab. 98, E1988–E1998 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miura, K. et al. An overgrowth disorder associated with excessive production of cGMP due to a gain-of-function mutation of the natriuretic peptide receptor 2 gene. PLoS ONE 7, e42180 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Boudin, E. et al. Bi-allelic loss-of-function mutations in the NPR-C receptor result in enhanced growth and connective tissue abnormalities. Am. J. Hum. Genet. 103, 288–295 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bocciardi, R. et al. Overexpression of the C-type natriuretic peptide (CNP) is associated with overgrowth and bone anomalies in an individual with balanced t(2;7) translocation. Hum. Mutat. 28, 724–731 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnold, A. et al. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J. Clin. Invest. 86, 1084–1087 (1990).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Duchatelet, S., Ostergaard, E., Cortes, D., Lemainque, A. & Julier, C. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum. Mol. Genet. 14, 1–5 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jobert, A. S. et al. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J. Clin. Invest. 102, 34–40 (1998).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Schipani, E., Kruse, K. & Juppner, H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268, 98–100 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minina, E. et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128, 4523–4534 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanske, B. et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273, 663–666 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hellemans, J. et al. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses in hands and hips. Am. J. Hum. Genet. 72, 1040–1046 (2003).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Vasques, G. A. et al. IHH gene mutations causing short stature with nonspecific skeletal abnormalities and response to growth hormone therapy. J. Clin. Endocrinol. Metab. 103, 604–614 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gleghorn, L., Ramesar, R., Beighton, P. & Wallis, G. A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am. J. Hum. Genet. 77, 484–490 (2005).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tompson, S. W. et al. A recessive skeletal dysplasia, SEMD aggrecan type, results from a missense mutation affecting the C-type lectin domain of aggrecan. Am. J. Hum. Genet. 84, 72–79 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Domowicz, M. S., Cortes, M., Henry, J. G. & Schwartz, N. B. Aggrecan modulation of growth plate morphogenesis. Dev. Biol. 329, 242–257 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Laing, A. F., Lowell, S. & Brickman, J. M. Gro/TLE enables embryonic stem cell differentiation by repressing pluripotent gene expression. Dev. Biol. 397, 56–66 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, H., Nakata, K., Kimata, K., Nakanishi, I. & Yamada, Y. Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan. Proc. Natl Acad. Sci. USA 94, 6943–6947 (1997).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Griffith, E. et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat. Genet. 40, 232–236 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. M. Mechanisms and functions of DNA mismatch repair. Cell Res. 18, 85–98 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rauch, A. et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 319, 816–819 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farcy, S., Hachour, H., Bahi-Buisson, N. & Passemard, S. Genetic primary microcephalies: when centrosome dysfunction dictates brain and body size. Cells https://doi.org/10.3390/cells12131807 (2023).

  • Bond, J. et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 37, 353–355 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Dosari, M. S., Shaheen, R., Colak, D. & Alkuraya, F. S. Novel CENPJ mutation causes Seckel syndrome. J. Med. Genet. 47, 411–414 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guernsey, D. L. et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am. J. Hum. Genet. 87, 40–51 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kalay, E. et al. CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat. Genet. 43, 23–26 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, C. A. et al. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat. Genet. 46, 1283–1292 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Makhdoom, E. U. H. et al. Modifier genes in microcephaly: a report on WDR62, CEP63, RAD50 and PCNT variants exacerbating disease caused by biallelic mutations of ASPM and CENPJ. Genes https://doi.org/10.3390/genes12050731 (2021).

  • Guernsey, D. L. et al. Mutations in origin recognition complex gene ORC4 cause Meier–Gorlin syndrome. Nat. Genet. 43, 360–364 (2011). Together with Bicknell et al. (2011, ref. 68) and Bicknell et al. (2011, ref. 69), these studies describe the first monogenic disorders related to DNA replication origin licensing causing a form of microcephalic primordial dwarfism, MeierGorlin syndrome.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bicknell, L. S. et al. Mutations in the pre-replication complex cause Meier–Gorlin syndrome. Nat. Genet. 43, 356–359 (2011). Together with Guernsey et al. (2011) and Bicknell et al. (2011), these studies describe the first monogenic disorders related to DNA replication origin licensing causing a form of microcephalic primordial dwarfism, Meier–Gorlin syndrome.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bicknell, L. S. et al. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier–Gorlin syndrome. Nat. Genet. 43, 350–355 (2011). Together with Guernsey et al. (2011) and Bicknell et al. (2011), these studies describe the first monogenic disorders related to DNA replication origin licensing causing a form of microcephalic primordial dwarfism, Meier–Gorlin syndrome.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burrage, L. C. et al. De novo GMNN mutations cause autosomal-dominant primordial dwarfism associated with Meier–Gorlin syndrome. Am. J. Hum. Genet. 97, 904–913 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fenwick, A. L. et al. Mutations in CDC45, encoding an essential component of the pre-initiation complex, cause Meier–Gorlin syndrome and craniosynostosis. Am. J. Hum. Genet. 99, 125–138 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Vetro, A. et al. MCM5: a new actor in the link between DNA replication and Meier–Gorlin syndrome. Eur. J. Hum. Genet. 25, 646–650 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Knapp, K. M. et al. Linked-read genome sequencing identifies biallelic pathogenic variants in DONSON as a novel cause of Meier–Gorlin syndrome. J. Med. Genet. 57, 195–202 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knapp, K. M. et al. MCM complex members MCM3 and MCM7 are associated with a phenotypic spectrum from Meier–Gorlin syndrome to lipodystrophy and adrenal insufficiency. Eur. J. Hum. Genet. 29, 1110–1120 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nabais Sa, M. J. et al. Biallelic GINS2 variant p.(Arg114Leu) causes Meier–Gorlin syndrome with craniosynostosis. J. Med. Genet. 59, 776–780 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McQuaid, M. E. et al. Hypomorphic GINS3 variants alter DNA replication and cause Meier–Gorlin syndrome. JCI Insight 7, e155648 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nielsen-Dandoroff, E., Ruegg, M. S. G. & Bicknell, L. S. The expanding genetic and clinical landscape associated with Meier–Gorlin syndrome. Eur. J. Hum. Genet. 31, 859–868 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bongers, E. M. et al. Meier–Gorlin syndrome: report of eight additional cases and review. Am. J. Med. Genet. 102, 115–124 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pachlopnik Schmid, J. et al. Polymerase epsilon1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature (‘FILS syndrome’). J. Exp. Med. 209, 2323–2330 (2012).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Reynolds, J. J. et al. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism. Nat. Genet. 49, 537–549 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Cottineau, J. et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J. Clin. Invest. 127, 1991–2006 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mace, E. M. et al. Human NK cell deficiency as a result of biallelic mutations in MCM10. J. Clin. Invest. 130, 5272–5286 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bellelli, R. & Boulton, S. J. Spotlight on the replisome: aetiology of DNA replication-associated genetic diseases. Trends Genet. 37, 317–336 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia–telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat. Genet. 33, 497–501 (2003). This paper describes the first identification of a gene causing microcephalic primordial dwarfism, in this case, Seckel syndrome.

    Article 
    PubMed 

    Google Scholar
     

  • Ogi, T. et al. Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel syndrome. PLoS Genet. 8, e1002945 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tibelius, A. et al. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J. Cell Biol. 185, 1149–1157 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Klingseisen, A. & Jackson, A. P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 25, 2011–2024 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Rao, E. et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat. Genet. 16, 54–63 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montalbano, A. et al. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency. EMBO Mol. Med. 8, 1455–1469 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hawkes, G. et al. Identification and analysis of individuals who deviate from their genetically-predicted phenotype. PLoS Genet. 19, e1010934 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Liang, J. S. et al. A newly recognised microdeletion syndrome of 2p15–16.1 manifesting moderate developmental delay, autistic behaviour, short stature, microcephaly, and dysmorphic features: a new patient with 3.2 Mb deletion. J. Med. Genet. 46, 645–647 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Coe, B. P. et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 46, 1063–1071 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Barua, S. et al. 3q27.1 microdeletion causes prenatal and postnatal growth restriction and neurodevelopmental abnormalities. Mol. Cytogenet. 15, 7 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wetzel, A. S. & Darbro, B. W. A comprehensive list of human microdeletion and microduplication syndromes. BMC Genom. Data 23, 82 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ottesen, A. M. et al. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy. Am. J. Med. Genet. A 152A, 1206–1212 (2010).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dauber, A. et al. Genome-wide association of copy-number variation reveals an association between short stature and the presence of low-frequency genomic deletions. Am. J. Hum. Genet. 89, 751–759 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Dietz, H. in GeneReviews® (eds Adam, M. P. et al.) (Univ. of Washington, Seattle, 1993).

  • Sedes, L. et al. Fibrillin-1 deficiency in the outer perichondrium causes longitudinal bone overgrowth in mice with Marfan syndrome. Hum. Mol. Genet. 31, 3281–3289 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Pilia, G. et al. Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nat. Genet. 12, 241–247 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filmus, J., Capurro, M. & Rast, J. Glypicans. Genome Biol. 9, 224 (2008).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Cohen, A. S. et al. A novel mutation in EED associated with overgrowth. J. Hum. Genet. 60, 339–342 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imagawa, E. et al. Mutations in genes encoding polycomb repressive complex 2 subunits cause Weaver syndrome. Hum. Mutat. 38, 637–648 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drosos, Y. et al. NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Mol. Cell 82, 2472–2489 e2478 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat. Genet. 30, 365–366 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luscan, A. et al. Mutations in SETD2 cause a novel overgrowth condition. J. Med. Genet. 51, 512–517 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, M. et al. Mutation pattern and genotype–phenotype correlations of SETD2 in neurodevelopmental disorders. Eur. J. Med. Genet. 64, 104200 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kosho, T. et al. Clinical correlations of mutations affecting six components of the SWI/SNF complex: detailed description of 21 patients and a review of the literature. Am. J. Med. Genet. A 161A, 1221–1237 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Malan, V. et al. Distinct effects of allelic NFIX mutations on nonsense-mediated mRNA decay engender either a Sotos-like or a Marshall–Smith syndrome. Am. J. Hum. Genet. 87, 189–198 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bernier, R. et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158, 263–276 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tatton-Brown, K. et al. Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability. Am. J. Hum. Genet. 100, 725–736 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Jeffries, A. R. et al. Growth disrupting mutations in epigenetic regulatory molecules are associated with abnormalities of epigenetic aging. Genome Res. 29, 1057–1066 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bell-Hensley, A. et al. Skeletal abnormalities in mice with Dnmt3a missense mutations. Bone 183, 117085 (2024).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Smith, A. M. et al. Functional and epigenetic phenotypes of humans and mice with DNMT3A overgrowth syndrome. Nat. Commun. 12, 4549 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Russler-Germain, D. A. et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25, 442–454 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lui, J. C. et al. Loss-of-function variant in SPIN4 causes an X-linked overgrowth syndrome. JCI Insight 8, e167074 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hauer, N. N. et al. Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature. Genet. Med. 20, 630–638 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Molecular diagnostic yield of exome sequencing and chromosomal microarray in short stature: a systematic review and meta-analysis. JAMA Pediatr. 177, 1149–1157 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Visscher, P. M. et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2, e41 (2006).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Campbell, H. & Rudan, I. Interpretation of genetic association studies in complex disease. Pharmacogenomics J. 2, 349–360 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hawkes, G. et al. Whole-genome sequencing in 333,100 individuals reveals rare non-coding single variant and aggregate associations with height. Nat. Commun. 15, 8549 (2024).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010). This study was the first comprehensive genome-wide association study of height.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA 111, E455–E464 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Nicolae, D. L. Association tests for rare variants. Annu. Rev. Genom. Hum. Genet. 17, 117–130 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of thousands of phenotypes in 394,841 UK Biobank exomes. Cell Genom. 2, 100168 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Jurgens, S. J. et al. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat. Genet. 54, 240–250 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Barton, A. R., Sherman, M. A., Mukamel, R. E. & Loh, P. R. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses. Nat. Genet. 53, 1260–1269 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, S. et al. A Genomics England haplotype reference panel and imputation of UK Biobank. Nat. Genet. 56, 1800–1803 (2024).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Berndt, S. I. et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 501–512 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Estrada, K. et al. A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation. Hum. Mol. Genet. 18, 3516–3524 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gudbjartsson, D. F. et al. Many sequence variants affecting diversity of adult human height. Nat. Genet. 40, 609–615 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dateki, S. ACAN mutations as a cause of familial short stature. Clin. Pediatr. Endocrinol. 26, 119–125 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Weedon, M. N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40, 575–583 (2008).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Baronas, J. M. et al. Genome-wide CRISPR screening of chondrocyte maturation newly implicates genes in skeletal growth and height-associated GWAS loci. Cell Genom. 3, 100299 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fukuzawa, R. et al. Autopsy case of microcephalic osteodysplastic primordial ‘dwarfism’ type II. Am. J. Med. Genet. 113, 93–96 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Sarig, O. et al. Short stature, onychodysplasia, facial dysmorphism, and hypotrichosis syndrome is caused by a POC1A mutation. Am. J. Hum. Genet. 91, 337–342 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Geister, K. A. et al. LINE-1 mediated insertion into Poc1a (Protein of Centriole 1A) causes growth insufficiency and male infertility in mice. PLoS Genet. 11, e1005569 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Marchini, A. et al. The short stature homeodomain protein SHOX induces cellular growth arrest and apoptosis and is expressed in human growth plate chondrocytes. J. Biol. Chem. 279, 37103–37114 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lui, J. C. Growth disorders caused by variants in epigenetic regulators: progress and prospects. Front. Endocrinol. 15, 1327378 (2024).

    Article 

    Google Scholar
     

  • Choufani, S. et al. DNA methylation signature for EZH2 functionally classifies sequence variants in three PRC2 complex genes. Am. J. Hum. Genet. 106, 596–610 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hood, R. L. et al. The defining DNA methylation signature of Floating–Harbor syndrome. Sci. Rep. 6, 38803 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mirzamohammadi, F. et al. Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-β signalling. Nat. Commun. 7, 12047 (2016). An interesting paper that makes strong links between the developmental regulator polycomb repressive complex 2 and skeletal growth.

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lui, J. C. et al. EZH1 and EZH2 promote skeletal growth by repressing inhibitors of chondrocyte proliferation and hypertrophy. Nat. Commun. 7, 13685 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Benonisdottir, S. et al. Epigenetic and genetic components of height regulation. Nat. Commun. 7, 13490 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zoledziewska, M. et al. Height-reducing variants and selection for short stature in Sardinia. Nat. Genet. 47, 1352–1356 (2015).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Sakai, L. Y., Keene, D. R., Renard, M. & De Backer, J. FBN1: the disease-causing gene for Marfan syndrome and other genetic disorders. Gene 591, 279–291 (2016).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Peeters, S., De Kinderen, P., Meester, J. A. N., Verstraeten, A. & Loeys, B. L. The fibrillinopathies: new insights with focus on the paradigm of opposing phenotypes for both FBN1 and FBN2. Hum. Mutat. 43, 815–831 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ko, J. M. et al. Skeletal overgrowth syndrome caused by overexpression of C-type natriuretic peptide in a girl with balanced chromosomal translocation, t(1;2)(q41;q37.1). Am. J. Med. Genet. A 167A, 1033–1038 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Toydemir, R. M. et al. A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am. J. Hum. Genet. 79, 935–941 (2006).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kake, T. et al. Chronically elevated plasma C-type natriuretic peptide level stimulates skeletal growth in transgenic mice. Am. J. Physiol. Endocrinol. Metab. 297, E1339–E1348 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuji, T. & Kunieda, T. A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J. Biol. Chem. 280, 14288–14292 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lorget, F. et al. Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. Am. J. Hum. Genet. 91, 1108–1114 (2012).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Heyn, P. et al. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of polycomb-regulated regions. Nat. Genet. 51, 96–105 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, H. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Franco, L. M. et al. A syndrome of short stature, microcephaly and speech delay is associated with duplications reciprocal to the common Sotos syndrome deletion. Eur. J. Hum. Genet. 18, 258–261 (2010). An interesting case report illustrating how reciprocal structural genomic alterations can have the opposite effect on height.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quintero-Rivera, F. et al. 5q35 duplication presents with psychiatric and undergrowth phenotypes mediated by NSD1 overexpression and mTOR signaling downregulation. Hum. Genet. 140, 681–690 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Estrada, K. et al. Identifying therapeutic drug targets using bidirectional effect genes. Nat. Commun. 12, 2224 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Martin, A. R. et al. Increasing diversity in genomics requires investment in equitable partnerships and capacity building. Nat. Genet. 54, 740–745 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Carroll, S. R. et al. Using indigenous standards to implement the care principles: setting expectations through tribal research codes. Front. Genet. 13, 823309 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Carroll, S. R. et al. Extending the CARE principles from tribal research policies to benefit sharing in genomic research. Front. Genet. 13, 1052620 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yasoda, A. et al. Systemic administration of C-type natriuretic peptide as a novel therapeutic strategy for skeletal dysplasias. Endocrinology 150, 3138–3144 (2009).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Weinberg, D. N. et al. Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands. Nat. Genet. 53, 794–800 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Aref-Eshghi, E. et al. Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am. J. Hum. Genet. 108, 1161–1163 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Peeters, S. et al. DNA methylation profiling and genomic analysis in 20 children with short stature who were born small for gestational age. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgaa465 (2020).

  • To, K. et al. A multi-omic atlas of human embryonic skeletal development. Nature 635, 657–667 (2024).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kelly, A. et al. Age-based reference ranges for annual height velocity in US children. J. Clin. Endocrinol. Metab. 99, 2104–2112 (2014).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kornak, U. & Mundlos, S. Genetic disorders of the skeleton: a developmental approach. Am. J. Hum. Genet. 73, 447–474 (2003).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Hutchings, J. J., Escamilla, R. F., Deamer, W. C. & Li, C. H. Metabolic changes produced by human growth hormone (Li) in a pituitary dwarf. J. Clin. Endocrinol. Metab. 19, 759–769 (1959).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raben, M. S. Treatment of a pituitary dwarf with human growth hormone. J. Clin. Endocrinol. Metab. 18, 901–903 (1958).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Degenerative neurologic disease in patients formerly treated with human growth hormone: report of the committee on growth hormone use of the Lawson Wilkins Pediatric Endocrine Society, May 1985. J. Pediatr. 107, 10–12 (1985).


    Google Scholar
     

  • Flodh, H. Human growth hormone produced with recombinant DNA technology: development and production. Acta Paediatr. Scand. Suppl. 325, 1–9 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kucharska, A. et al. The effects of growth hormone treatment beyond growth promotion in patients with genetic syndromes: a systematic review of the literature. Int. J. Mol. Sci. https://doi.org/10.3390/ijms251810169 (2024).

  • Savarirayan, R. et al. C-type natriuretic peptide analogue therapy in children with achondroplasia. N. Engl. J. Med. 381, 25–35 (2019). The first clinical trial reporting effects of C-type natriuretic peptide therapy in individuals with achondroplasia.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savarirayan, R. et al. Once-daily, subcutaneous vosoritide therapy in children with achondroplasia: a randomised, double-blind, phase 3, placebo-controlled, multicentre trial. Lancet 396, 684–692 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savarirayan, R. et al. Rationale, design, and methods of a randomized, controlled, open-label clinical trial with open-label extension to investigate the safety of vosoritide in infants, and young children with achondroplasia at risk of requiring cervicomedullary decompression surgery. Sci. Prog. 104, 368504211003782 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savarirayan, R. et al. Safe and persistent growth-promoting effects of vosoritide in children with achondroplasia: 2-year results from an open-label, phase 3 extension study. Genet. Med. 23, 2443–2447 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Savarirayan, R. et al. Vosoritide therapy in children with achondroplasia aged 3–59 months: a multinational, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Child. Adolesc. Health 8, 40–50 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savarirayan, R. et al. Oral infigratinib therapy in children with achondroplasia. N. Engl. J. Med. 392, 865–874 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savarirayan, R., Hoover-Fong, J., Yap, P. & Fredwall, S. O. New treatments for children with achondroplasia. Lancet Child. Adolesc. Health 8, 301–310 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar