• Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and pathologic features of congenital myasthenic syndromes caused by 35 genes-a comprehensive review. Int J Mol Sci. 2023;24:3730.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramdas S, Beeson D, Dong YY. Congenital myasthenic syndromes: increasingly complex. Curr Opin Neurol. 2024;37:493–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihaylova V, Scola RH, Gervini B, Lorenzoni PJ, Kay CK, Werneck LC, et al. Molecular characterisation of congenital myasthenic syndromes in Southern Brazil. J Neurol Neurosurg Psychiatry. 2010;81:973–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Natera-de Benito D, Topf A, Vilchez JJ, Gonzalez-Quereda L, Dominguez-Carral J, Diaz-Manera J, et al. Molecular characterization of congenital myasthenic syndromes in Spain. Neuromuscul Disord. 2017;27:1087–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krenn M, Sener M, Rath J, Zulehner G, Keritam O, Wagner M, et al. The clinical and molecular landscape of congenital myasthenic syndromes in Austria: a nationwide study. J Neurol. 2023;270:909–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smeets N, Gheldof A, Dequeker B, Poleur M, Maldonado Slootjes S, Van Parijs V, et al. Congenital myasthenic syndromes in Belgium: genetic and clinical characterization of pediatric and adult patients. Pediatr Neurol. 2024;158:57–65.

    Article 
    PubMed 

    Google Scholar
     

  • Parr JR, Andrew MJ, Finnis M, Beeson D, Vincent A, Jayawant S. How common is childhood myasthenia? The UK incidence and prevalence of autoimmune and congenital myasthenia. Arch Dis Child. 2014;99:539–42.

    Article 
    PubMed 

    Google Scholar
     

  • Troha Gergeli A, Neubauer D, Golli T, Butenko T, Loboda T, Maver A, et al. Prevalence and genetic subtypes of congenital myasthenic syndromes in the pediatric population of Slovenia. Eur J Paediatr Neurol. 2020;26:34–8.

    Article 
    PubMed 

    Google Scholar
     

  • Qashqari H, McNiven V, Gonorazky H, Mendoza-Londono R, Hassan A, Kulkarni T, et al. PURA syndrome: neuromuscular junction manifestations with potential therapeutic implications. Neuromuscul Disord. 2022;32:842–4.

    Article 
    PubMed 

    Google Scholar
     

  • Pugliese A, Della Marina A, de Paula Estephan E, Zanoteli E, Roos A, Schara-Schmidt U, et al. Mutations in PTPN11 could lead to a congenital myasthenic syndrome phenotype: a Noonan syndrome case series. J Neurol. 2024;271:1331–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen XM, Selcen D, Brengman J, Engel AG. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology. 2014;83:2247–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reynolds HM, Wen T, Farrell A, Mao R, Moore B, Boyden SE, et al. Rapid genome sequencing identifies a novel de novo SNAP25 variant for neonatal congenital myasthenic syndrome. Cold Spring Harb Mol Case Stud. 2022;8:a006242.

  • Herrmann DN, Horvath R, Sowden JE, Gonzalez M, Sanchez-Mejias A, Guan Z, et al. Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. Am J Hum Genet. 2014;95:332–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whittaker RG, Herrmann DN, Bansagi B, Hasan BA, Lofra RM, Logigian EL, et al. Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology. 2015;85:1964–71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montes-Chinea NI, Guan Z, Coutts M, Vidal C, Courel S, Rebelo AP, et al. Identification of a new SYT2 variant validates an unusual distal motor neuropathy phenotype. Neurol Genet. 2018;4:e282.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donkervoort S, Mohassel P, Laugwitz L, Zaki MS, Kamsteeg EJ, Maroofian R, et al. Biallelic loss of function variants in SYT2 cause a treatable congenital onset presynaptic myasthenic syndrome. Am J Med Genet A. 2020;182:2272–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maselli RA, van der Linden H Jr, Ferns M. Recessive congenital myasthenic syndrome caused by a homozygous mutation in SYT2 altering a highly conserved C-terminal amino acid sequence. Am J Med Genet A. 2020;182:1744–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maselli RA, Wei DT, Hodgson TS, Sampson JB, Vazquez J, Smith HL, et al. Dominant and recessive congenital myasthenic syndromes caused by SYT2 mutations. Muscle Nerve. 2021;64:219–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schara U, Lochmuller H. Therapeutic strategies in congenital myasthenic syndromes. Neurotherapeutics. 2008;5:542–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson R, Bonne G, Missier P, Lochmuller H. Targeted therapies for congenital myasthenic syndromes: systematic review and steps towards a treatabolome. Emerg Top Life Sci. 2019;3:19–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wargon I, Richard P, Kuntzer T, Sternberg D, Nafissi S, Gaudon K, et al. Long-term follow-up of patients with congenital myasthenic syndrome caused by COLQ mutations. Neuromuscul Disord. 2012;22:318–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yis U, Becker K, Kurul SH, Uyanik G, Bayram E, Haliloglu G, et al. Genetic landscape of congenital myasthenic syndromes from Turkey: novel mutations and clinical insights. J Child Neurol. 2017;32:759–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durmus H, Shen XM, Serdaroglu-Oflazer P, Kara B, Parman-Gulsen Y, Ozdemir C, et al. Congenital myasthenic syndromes in Turkey: clinical clues and prognosis with long term follow-up. Neuromuscul Disord. 2018;28:315–22.

    Article 
    PubMed 

    Google Scholar
     

  • Maselli RA, Ng JJ, Anderson JA, Cagney O, Arredondo J, Williams C, et al. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. J Med Genet. 2009;46:203–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohkawara B, Cabrera-Serrano M, Nakata T, Milone M, Asai N, Ito K, et al. LRP4 third beta-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner. Hum Mol Genet. 2014;23:1856–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Theuriet J, Masingue M, Behin A, Ferreiro A, Bassez G, Jaubert P, et al. Congenital myasthenic syndromes in adults: clinical features, diagnosis and long-term prognosis. Brain. 2024;147:3849–62.

  • Polavarapu K, Sunitha B, Topf A, Preethish-Kumar V, Thompson R, Vengalil S, et al. Clinical and genetic characterisation of a large Indian congenital myasthenic syndrome cohort. Brain. 2024;147:281–96.

    Article 
    PubMed 

    Google Scholar
     

  • Khan MM, Lustrino D, Silveira WA, Wild F, Straka T, Issop Y, et al. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proc Natl Acad Sci USA. 2016;113:746–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arkhipov A, Zhilyakov N, Sibgatullina G, Nevsky E, Bukharaeva EA, Petrov AM. Adrenergic modulation of acetylcholine release at the mouse neuromuscular junctions of fast-twitch skeletal muscle. Neurochem Res. 2025;50:162.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukudome T, Ohno K, Brengman JM, Engel AG. Quinidine normalizes the open duration of slow-channel mutants of the acetylcholine receptor. Neuroreport. 1998;9:1907–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harper CM, Engel AG. Quinidine sulfate therapy for the slow-channel congenital myasthenic syndrome. Ann Neurol. 1998;43:480–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harper CM, Fukodome T, Engel AG. Treatment of slow-channel congenital myasthenic syndrome with fluoxetine. Neurology. 2003;60:1710–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vidanagamage A, Gooneratne IK, Nandasiri S, Gunaratne K, Fernando A, Maxwell S, et al. A rare mutation in the COLQ gene causing congenital myasthenic syndrome with remarkable improvement to fluoxetine: A case report. Neuromuscul Disord. 2021;31:246–8.

    Article 
    PubMed 

    Google Scholar
     

  • Tsujino A, Maertens C, Ohno K, Shen XM, Fukuda T, Harper CM, et al. Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci USA. 2003;100:7377–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berghold VM, Koko M, Berutti R, Plecko B. Case report: novel SCN4A variant associated with a severe congenital myasthenic syndrome/myopathy phenotype. Front Pediatr. 2022;10:944784.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Habbout K, Poulin H, Rivier F, Giuliano S, Sternberg D, Fontaine B, et al. A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis. Neurology. 2016;86:161–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oury J, Liu Y, Topf A, Todorovic S, Hoedt E, Preethish-Kumar V, et al. MACF1 links Rapsyn to microtubule- and actin-binding proteins to maintain neuromuscular synapses. J Cell Biol. 2019;218:1686–705.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobyns WB, Aldinger KA, Ishak GE, Mirzaa GM, Timms AE, Grout ME, et al. MACF1 mutations encoding highly conserved zinc-binding residues of the GAR domain cause defects in neuronal migration and axon guidance. Am J Hum Genet. 2018;103:1009–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillen HS, Temiakov D, Cramer P. Structural basis of mitochondrial transcription. Nat Struct Mol Biol. 2018;25:754–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Haute L, O’Connor E, Diaz-Maldonado H, Munro B, Polavarapu K, Hock DH, et al. TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease. Nat Commun. 2023;14:1009.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connor E, Topf A, Muller JS, Cox D, Evangelista T, Colomer J, et al. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome. Brain. 2016;139:2143–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connor K, Spendiff S, Lochmuller H, Horvath R. Mitochondrial mutations can alter neuromuscular transmission in congenital myasthenic syndrome and mitochondrial disease. Int J Mol Sci. 2023;24:8505.

  • Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29:465–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Digilio MC, Conti E, Sarkozy A, Mingarelli R, Dottorini T, Marino B, et al. Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet. 2002;71:389–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendez HM, Opitz JM. Noonan syndrome: a review. Am J Med Genet. 1985;21:493–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarkozy A, Digilio MC, Dallapiccola B. Leopard syndrome. Orphanet J Rare Dis. 2008;3:13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clemen CS, Herrmann H, Strelkov SV, Schroder R. Desminopathies: pathology and mechanisms. Acta Neuropathol. 2013;125:47–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polavarapu K, O’Neil D, Thompson R, Spendiff S, Nandeesh B, Vengalil S, et al. Partial loss of desmin expression due to a leaky splice site variant in the human DES gene is associated with neuromuscular transmission defects. Neuromuscul Disord. 2024;39:10–8.

    Article 
    PubMed 

    Google Scholar
     

  • Durmus H, Ayhan O, Cirak S, Deymeer F, Parman Y, Franke A, et al. Neuromuscular endplate pathology in recessive desminopathies: Lessons from man and mice. Neurology. 2016;87:799–805.

    Article 
    PubMed 

    Google Scholar
     

  • Capetanaki Y, Papathanasiou S, Diokmetzidou A, Vatsellas G, Tsikitis M. Desmin related disease: a matter of cell survival failure. Curr Opin Cell Biol. 2015;32:113–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno SelcenD, Engel K. AG. Myofibrillar myopathy: clinical, morphological and genetic studies in 63 patients. Brain. 2004;127:439–51.

    Article 
    PubMed 

    Google Scholar
     

  • Onore ME, Savarese M, Picillo E, Passamano L, Nigro V, Politano L. Bi-Allelic DES gene variants causing autosomal recessive myofibrillar myopathies affecting both skeletal muscles and cardiac function. Int J Mol Sci. 2022;23:15906.

  • Fitzgerald J, Kennedy D, Viseshakul N, Cohen BN, Mattick J, Bateman JF, et al. UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein. Brain Res. 2000;877:110–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eimer S, Gottschalk A, Hengartner M, Horvitz HR, Richmond J, Schafer WR, et al. Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50. EMBO J. 2007;26:4313–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abiusi E, D’Alessandro M, Dieterich K, Quevarec L, Turczynski S, Valfort AC, et al. Biallelic mutation of UNC50, encoding a protein involved in AChR trafficking, is responsible for arthrogryposis. Hum Mol Genet. 2017;26:3989–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shravya MS, Purushothama G, Radhakrishnan P, Hebbar M, Guruvare S, Mathew M, et al. Biallelic variant, c.644-13_644-9del in UNC50 is associated with congenital myasthenia syndrome. Am J Med Genet A. 2025:e64086. https://doi.org/10.1002/ajmg.a.64086. Online ahead of print.

  • Morgan NV, Brueton LA, Cox P, Greally MT, Tolmie J, Pasha S, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome. Am J Hum Genet. 2006;79:390–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann K, Muller JS, Stricker S, Megarbane A, Rajab A, Lindner TH, et al. Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit. Am J Hum Genet. 2006;79:303–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seo J, Choi IH, Lee JS, Yoo Y, Kim NK, Choi M, et al. Rare cases of congenital arthrogryposis multiplex caused by novel recurrent CHRNG mutations. J Hum Genet. 2015;60:213–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen XM, Nakata T, Mizuno S, Imoto I, Selcen D, Ohno K, et al. Impaired gating of gamma- and epsilon-AChR respectively causes Escobar syndrome and fast-channel myasthenia. Ann Clin Transl Neurol. 2023;10:732–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geremek M, Dudarewicz L, Obersztyn E, Paczkowska M, Smyk M, Sobecka K, et al. Null variants in AGRN cause lethal fetal akinesia deformation sequence. Clin Genet. 2020;97:634–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Michalk A, Stricker S, Becker J, Rupps R, Pantzar T, Miertus J, et al. Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet. 2008;82:464–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shamseldin HE, Swaid A, Alkuraya FS. Lifting the lid on unborn lethal Mendelian phenotypes through exome sequencing. Genet Med. 2013;15:307–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agerholm JS, McEvoy FJ, Menzi F, Jagannathan V, Drogemuller C. A CHRNB1 frameshift mutation is associated with familial arthrogryposis multiplex congenita in Red dairy cattle. BMC Genom. 2016;17:479.

    Article 

    Google Scholar
     

  • Freed AS, Schwarz AC, Brei BK, Clowes Candadai SV, Thies J, Mah JK, et al. CHRNB1-associated congenital myasthenia syndrome: expanding the clinical spectrum. Am J Med Genet A. 2021;185:827–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravenscroft G, Clayton JS, Faiz F, Sivadorai P, Milnes D, Cincotta R, et al. Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J Med Genet. 2021;58:609–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen C, Han J, Xue J, Li R, Chen G, Yang X, et al. Case Report: Early diagnosis of lethal multiple pterygium syndrome with micrognathia: two novel mutations in the CHRND gene. Front Genet. 2023;14:1005624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogt J, Morgan NV, Marton T, Maxwell S, Harrison BJ, Beeson D, et al. Germline mutation in DOK7 associated with fetal akinesia deformation sequence. J Med Genet. 2009;46:338–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radhakrishnan P, Shukla A, Girisha KM, Nayak SS. Biallelic c.1263dupC in DOK7 results in fetal akinesia deformation sequence. Am J Med Genet A. 2020;182:804–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilbe M, Ekvall S, Eurenius K, Ericson K, Casar-Borota O, Klar J, et al. MuSK: a new target for lethal fetal akinesia deformation sequence (FADS). J Med Genet. 2015;52:195–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan-Sindhunata MB, Mathijssen IB, Smit M, Baas F, de Vries JI, van der Voorn JP, et al. Identification of a Dutch founder mutation in MUSK causing fetal akinesia deformation sequence. Eur J Hum Genet. 2015;23:1151–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li N, Qiao C, Lv Y, Yang T, Liu H, Yu WQ, et al. Compound heterozygous mutation of MUSK causing fetal akinesia deformation sequence syndrome: a case report. World J Clin Cases. 2019;7:3655–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiwari AK, Srinivasan VM, Phadke SR, Saxena D. Variants in DOK7 results in fetal akinesia deformation sequence: a case report and review of literature. Clin Genet. 2024;105:226–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayram Y, Karaca E, Coban Akdemir Z, Yilmaz EO, Tayfun GA, Aydin H, et al. Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J Clin Invest. 2016;126:762–78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogt J, Harrison BJ, Spearman H, Cossins J, Vermeer S, ten Cate LN, et al. Mutation analysis of CHRNA1, CHRNB1, CHRND, and RAPSN genes in multiple pterygium syndrome/fetal akinesia patients. Am J Hum Genet. 2008;82:222–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winters L, Van Hoof E, De Catte L, Van Den Bogaert K, de Ravel T, De Waele L, et al. Massive parallel sequencing identifies RAPSN and PDHA1 mutations causing fetal akinesia deformation sequence. Eur J Paediatr Neurol. 2017;21:745–53.

    Article 
    PubMed 

    Google Scholar
     

  • Hakonen AH, Polvi A, Saloranta C, Paetau A, Heikkila P, Almusa H, et al. SLC18A3 variants lead to fetal akinesia deformation sequence early in pregnancy. Am J Med Genet A. 2019;179:1362–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauche S, O’Regan S, Azuma Y, Laffargue F, McMacken G, Sternberg D, et al. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am J Hum Genet. 2016;99:753–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaouch A, Muller JS, Guergueltcheva V, Dusl M, Schara U, Rakocevic-Stojanovic V, et al. A retrospective clinical study of the treatment of slow-channel congenital myasthenic syndrome. J Neurol. 2012;259:474–81.

    Article 
    PubMed 

    Google Scholar
     

  • Finsterer J. Slow-channel congenital myasthenic syndrome due to the novel variant c.1396G_A in CHRNA1 that responds favorably to 3,4-diaminopyridine: a case report. Cureus. 2024;16:e73601.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mihaylova V, Muller JS, Vilchez JJ, Salih MA, Kabiraj MM, D’Amico A, et al. Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain. 2008;131:747–59.

    Article 
    PubMed 

    Google Scholar
     

  • Nishikawa A, Mori-Yoshimura M, Okamoto T, Oya Y, Nakata T, Ohno K, et al. Beneficial effects of 3,4-diaminopyridine in a 26-year-old woman with DOK7 congenital myasthenic syndrome who was originally diagnosed with facioscapulohumeral dystrophy]. Rinsho Shinkeigaku. 2014;54:561–4.

    Article 
    PubMed 

    Google Scholar
     

  • Santos M, Cruz S, Peres J, Santos L, Tavares P, Basto JP, et al. DOK7 myasthenic syndrome with subacute adult onset during pregnancy and partial response to fluoxetine. Neuromuscul Disord. 2018;28:278–82.

    Article 
    PubMed 

    Google Scholar
     

  • Mroczek M, Durmus H, Topf A, Parman Y, Straub V. Four individuals with a homozygous mutation in exon 1f of the PLEC gene and associated myasthenic features. Genes. 2020;11:716.

  • Wyrebek R, DiBartolomeo M, Brooks S, Geller T, Crenshaw M, Iyadurai S. Hypotonic infant with PURA syndrome-related channelopathy successfully treated with pyridostigmine. Neuromuscul Disord. 2022;32:166–9.

    Article 
    PubMed 

    Google Scholar