• Crick, F. Molecular biology in the year 2000. Nature 228, 613–615 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cech, T. R. The RNA worlds in context. Cold Spring Harb. Perspect. Biol. 4, a006742 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delaunay, S., Helm, M. & Frye, M. RNA modifications in physiology and disease: towards clinical applications. Nat. Rev. Genet. 25, 104–122 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilbert, W. V. & Nachtergaele, S. mRNA regulation by RNA modifications. Annu. Rev. Biochem. 92, 175–198 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiener, D. & Schwartz, S. The epitranscriptome beyond m6A. Nat. Rev. Genet. 22, 119–131 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bass, B. L. Adenosine deaminases that act on RNA, then and now. RNA 30, 521–529 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eggington, J. M., Greene, T. & Bass, B. L. Predicting sites of ADAR editing in double-stranded RNA. Nat. Commun. 2, 319 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Chalk, A. M., Taylor, S., Heraud-Farlow, J. E. & Walkley, C. R. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol. 20, 268 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa Cruz, P. H., Kato, Y., Nakahama, T., Shibuya, T. & Kawahara, Y. A comparative analysis of ADAR mutant mice reveals site-specific regulation of RNA editing. RNA 26, 454–469 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaffer, A. A. & Levanon, E. Y. ALU A-to-I RNA editing: millions of sites and many open questions. Methods Mol. Biol. 2181, 149–162 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazak, L. et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 24, 365–376 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Licht, K. et al. A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Res. 29, 1453–1463 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neeman, Y., Levanon, E. Y., Jantsch, M. F. & Eisenberg, E. RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA 12, 1802–1809 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, U., Wang, Y., Sanford, T., Zeng, Y. & Nishikura, K. Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc. Natl Acad. Sci. USA 91, 11457–11461 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melcher, T. et al. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J. Biol. Chem. 271, 31795–31798 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mittaz, L. et al. Cloning of a human RNA editing deaminase (ADARB1) of glutamate receptors that maps to chromosome 21q22.3. Genomics 41, 210–217 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., George, C. X., Patterson, J. B. & Samuel, C. E. Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J. Biol. Chem. 272, 4419–4428 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Connell, M. A. et al. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol. Cell Biol. 15, 1389–1397 (1995).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson, J. B. & Samuel, C. E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell Biol. 15, 5376–5388 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mladenova, D. et al. Adar3 is involved in learning and memory in mice. Front. Neurosci. 12, 243 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajendren, S. et al. Profiling neural editomes reveals a molecular mechanism to regulate RNA editing during development. Genome Res. 31, 27–39 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eliad, B. et al. ADBP-1 regulates ADR-2 nuclear localization to control editing substrate selection. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae641 (2024).

  • Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horsch, M. et al. Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice. J. Biol. Chem. 286, 18614–18622 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, T. Y. et al. Bi-allelic ADARB1 variants associated with microcephaly, intellectual disability, and seizures. Am. J. Hum. Genet. 106, 467–483 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maroofian, R. et al. Biallelic variants in ADARB1, encoding a dsRNA-specific adenosine deaminase, cause a severe developmental and epileptic encephalopathy. J. Med. Genet. 58, 495–504 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gatsiou, A. et al. The RNA editor ADAR2 promotes immune cell trafficking by enhancing endothelial responses to interleukin-6 during sterile inflammation. Immunity 56, 979–997.e11 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samuel, C. E. ADARs: viruses and innate immunity. Curr. Top. Microbiol. Immunol. 353, 163–195 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-021-00430-1 (2021).

  • de Oliveira Mann, C. C. & Hornung, V. Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. Eur. J. Immunol. 51, 1897–1910 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Y., Jiang, W. & Zhou, R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-024-01027-3 (2024).

  • Maelfait, J. & Rehwinkel, J. The Z-nucleic acid sensor ZBP1 in health and disease. J. Exp. Med. https://doi.org/10.1084/jem.20221156 (2023).

  • Herbert, A. To “Z” or not to “Z”: Z-RNA, self-recognition, and the MDA5 helicase. PLoS Genet. 17, e1009513 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakahama, T. & Kawahara, Y. Deciphering the biological significance of ADAR1–Z-RNA interactions. Int. J. Mol. Sci. https://doi.org/10.3390/ijms222111435 (2021).

  • Herbert, A. Z-DNA and Z-RNA in human disease. Commun. Biol. 2, 7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. I. et al. RNA editing at a limited number of sites is sufficient to prevent MDA5 activation in the mouse brain. PLoS Genet. 17, e1009516 (2021). This paper reports the generation of an ADAR1p110-deficient mouse model, which was used to demonstrate that the physiological function of ADAR1p110 is uncoupled from innate immune sensing and that its editing-independent, protein-dependent functions are important in vivo.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartner, J. C. et al. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 279, 4894–4902 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279, 4952–4961 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeburg, P. H. The role of RNA editing in controlling glutamate receptor channel properties. J. Neurochem. 66, 1–5 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartner, J. C., Walkley, C. R., Lu, J. & Orkin, S. H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gunage, R. & Zon, L. I. Role of RNA modifications in blood development and regeneration. Exp. Hematol. 138, 104279 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015). This paper reports an editing-deficient ADAR1 mouse model (p.E861A), which is used to demonstrate that the physiologically most important function of ADAR1 is editing of cellular dsRNA to prevent MDA5 activation, findings supported by Mannion et al. (2014) and Pestal et al. (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rice, G. I. et al. Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012). This study identifies LoF ADAR1 mutations in patients with the rare inherited disease AGS, and demonstrates that mutations in ADAR1 in humans cause an elevated type I interferon response.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rice, G. I. et al. Genetic, phenotypic, and interferon biomarker status in ADAR1-related neurological disease. Neuropediatrics 48, 166–184 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crow, Y. J. & Stetson, D. B. The type I interferonopathies: 10 years on. Nat. Rev. Immunol. 22, 471–483 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crow, Y. J. & Casanova, J. L. Human life within a narrow range: the lethal ups and downs of type I interferons. Sci. Immunol. 9, eadm8185 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodero, M. P. & Crow, Y. J. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J. Exp. Med. 213, 2527–2538 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crow, Y. J. & Manel, N. Aicardi–Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karki, A., Campbell, K. B., Mozumder, S., Fisher, A. J. & Beal, P. A. Impact of disease-associated mutations on the deaminase activity of ADAR1. Biochemistry 63, 282–293 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Z. et al. The phenotype of the most common human ADAR1p150 Zɑ mutation P193A in mice is partially penetrant. EMBO Rep. 24, e55835 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X. et al. ADAR1 Zɑ domain P195A mutation activates the MDA5-dependent RNA-sensing signaling pathway in brain without decreasing overall RNA editing. Cell Rep. 42, 112733 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mannion, N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbert, A. Mendelian disease caused by variants affecting recognition of Z-DNA and Z-RNA by the Zɑ domain of the double-stranded RNA editing enzyme ADAR. Eur. J. Hum. Genet. 28, 114–117 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014). This paper reports the identification of GoF mutations in IFIH1 (MDA5) causing a systemic type I interferonopathy, linking human mutations in ADAR1 and MDA5 mechanistically.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, B. et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152, 276–289 (2013). This study provides a biochemical and structual basis for the preference for MDA5 for long dsRNA.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crow, Y. J. et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 167A, 296–312 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Heraud-Farlow, J. E. et al. Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biol. 18, 166 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pestal, K. et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43, 933–944 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Reuver, R. et al. ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature 607, 784–789 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jiao, H. et al. ADAR1 averts fatal type I interferon induction by ZBP1. Nature 607, 776–783 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, H. et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172, 811–824.e814 (2018). This study uses LoF and reconstitution experiments in human embryonic stem cells to show that ADAR1 in humans is required to prevent MDA5 and PKR activation.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Z., Goradia, A., Walkley, C. R. & Heraud-Farlow, J. E. Generation of a new Adar1p150–/– mouse demonstrates isoform-specific roles in embryonic development and adult homeostasis. RNA 29, 1325–1338 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, S. V. et al. RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc. Natl Acad. Sci. USA 108, 331–336 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, T. et al. A small subset of cytosolic dsRNAs must be edited by ADAR1 to evade MDA5-mediated autoimmunity. Preprint at bioRxiv https://doi.org/10.1101/2022.08.29.505707 (2022).

  • Vukic, D. et al. Distinct interactomes of ADAR1 nuclear and cytoplasmic protein isoforms and their responses to interferon induction. Nucleic Acids Res. 52, 14184–14204 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, T. et al. Decoupling expression and editing preferences of ADAR1 p150 and p110 isoforms. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2021757118 (2021).

  • Hu, S. B. et al. ADAR1p150 prevents MDA5 and PKR activation via distinct mechanisms to avert fatal autoinflammation. Mol. Cell 83, 3869–3884.e7 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hur, S. Double-stranded RNA sensors and modulators in innate immunity. Annu. Rev. Immunol. 37, 349–375 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peisley, A. et al. Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments. Proc. Natl Acad. Sci. USA 109, E3340–E3349 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad, S. et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172, 797–810.e713 (2018). This work implements a biochemical assay using MDA5 binding to understand immunogenic dsRNA and identifies that they may arise from Alu elements in human cells.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levanon, E. Y., Cohen-Fultheim, R. & Eisenberg, E. In search of critical dsRNA targets of ADAR1. Trends Genet. 40, 250–259 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth, S. H., Levanon, E. Y. & Eisenberg, E. Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat. Methods 16, 1131–1138 (2019). This paper describes the development of the Alu editing index method that enables the comparison of editing rates in cohorts of samples, facilitating an understanding of how editing changes across and between samples and disease states.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaffer, A. A. et al. The cell line A-to-I RNA editing catalogue. Nucleic Acids Res. 48, 5849–5858 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing—immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knebel, U. E. et al. Disrupted RNA editing in β cells mimics early-stage type 1 diabetes. Cell Metab. 36, 48–61.e6 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faghihi, M. A. & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nat. Rev. Mol. Cell Biol. 10, 637–643 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurano, M. et al. Protein kinase R and the integrated stress response drive immunopathology caused by mutations in the RNA deaminase ADAR1. Immunity 54, 1948–1960.e5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hubbard, N. W. et al. ADAR1 mutation causes ZBP1-dependent immunopathology. Nature 607, 769–775 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liddicoat, B. J. et al. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Exp. Hematol. 44, 947–963 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinigaglia, K. et al. An ADAR1 dsRBD3–PKR kinase domain interaction on dsRNA inhibits PKR activation. Cell Rep. 43, 114618 (2024). Together with Hu et al. (2023), this paper reports that ADAR1 interacts with PKR in an editing-independent manner, which can restrict PKR activation and pathology associated with loss of ADAR1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, T. et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature 606, 594–602 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cottrell, K. A. et al. Activation of PKR by a short-hairpin RNA. Sci. Rep. 14, 23533 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bevilacqua, P. C., George, C. X., Samuel, C. E. & Cech, T. R. Binding of the protein kinase PKR to RNAs with secondary structure defects: role of the tandem A–G mismatch and noncontiguous helixes. Biochemistry 37, 6303–6316 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karki, R. et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 37, 109858 (2021).Together with de Reuver et al. (2022), Jiao et al. (2022), Hubbard et al. (2022) and Zhang et al. (2022), this paper explores the interaction of ADAR1 and ZBP1 and how these mammalian Zα-interacting proteins interact.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heraud-Farlow, J. E. et al. GGNBP2 regulates MDA5 sensing triggered by self double-stranded RNA following loss of ADAR1 editing. Sci. Immunol. 9, eadk0412 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, L. L. & Kagan, J. C. Targeting innate immune pathways for cancer immunotherapy. Immunity 56, 2206–2217 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salazar, A. M., Erlich, R. B., Mark, A., Bhardwaj, N. & Herberman, R. B. Therapeutic in situ autovaccination against solid cancers with intratumoral poly-ICLC: case report, hypothesis, and clinical trial. Cancer Immunol. Res. 2, 720–724 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kyi, C. et al. Therapeutic immune modulation against solid cancers with intratumoral poly-ICLC: a pilot trial. Clin. Cancer Res. 24, 4937–4948 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehdipour, P. et al. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 588, 169–173 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Licht, J. D. & Bennett, R. L. Leveraging epigenetics to enhance the efficacy of immunotherapy. Clin. Epigenetics 13, 115 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gannon, H. S. et al. Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat. Commun. 9, 5450 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat. Med. 25, 95–102 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020). Together with Gannon et al. (2018), Liu et al. (2019) and Ishizuka et al. (2019), this work demonstrates the potential role of targeting ADAR1 in cancers and in limiting immune response, highlighting ADAR1 as a target for cancer therapy.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Reuver, R. & Maelfait, J. Novel insights into double-stranded RNA-mediated immunopathology. Nat. Rev. Immunol. 24, 235–249 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Rehwinkel, J. & Mehdipour, P. ADAR1: from basic mechanisms to inhibitors. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2024.06.006 (2024).

  • Paz-Yaacov, N. et al. Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep. 13, 267–276 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zipeto, M. A. et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell 19, 177–191 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fumagalli, D. et al. Principles governing A-to-I RNA editing in the breast cancer transcriptome. Cell Rep. 13, 277–289 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, L. et al. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28, 515–528 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Q. et al. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc. Natl Acad. Sci. USA 110, 1041–1046 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19, 209–216 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendez Ruiz, S., Chalk, A. M., Goradia, A., Heraud-Farlow, J. & Walkley, C. R. Over-expression of ADAR1 in mice does not initiate or accelerate cancer formation in vivo. NAR Cancer 5, zcad023 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Azab, M. et al. Genetic variants in UNC93B1 predispose to childhood-onset systemic lupus erythematosus. Nat. Immunol. 25, 969–980 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • David, C. et al. Gain-of-function human UNC93B1 variants cause systemic lupus erythematosus and chilblain lupus. J. Exp. Med. https://doi.org/10.1084/jem.20232066 (2024).

  • Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science https://doi.org/10.1126/science.aat8657 (2019).

  • Crow, Y. J. et al. Mutations in ADAR1, IFIH1, and RNASEH2B presenting as spastic paraplegia. Neuropediatrics 45, 386–391 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Livingston, J. H. et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J. Med. Genet. 51, 76–82 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyamura, Y. et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am. J. Hum. Genet. 73, 693–699 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buers, I., Rice, G. I., Crow, Y. J. & Rutsch, F. MDA5-associated neuroinflammation and the Singleton–Merten syndrome: two faces of the same type I interferonopathy spectrum. J. Interferon Cytokine Res. 37, 214–219 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Barcelos, I. P. et al. Systematic analysis of genotype–phenotype variability in siblings with Aicardi–Goutières syndrome (AGS). Mol. Genet. Metab. 142, 108346 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shigemoto, T. et al. Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes. J. Biol. Chem. 284, 13348–13354 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira, R. C. et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat. Genet. 42, 777–780 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022). This paper reports that changes to RNA editing efficiency owing to genetic variants in the proximity of editing sites contribute to the genetic risk contribution for a broad range of common inflammatory conditions, broadening the role of the ADAR1–dsRNA–MDA5 axis beyond rare disease.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramaswami, G. et al. Genetic mapping uncovers cis-regulatory landscape of RNA editing. Nat. Commun. 6, 8194 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, K., Li, M. & Hakonarson, H. Analysing biological pathways in genome-wide association studies. Nat. Rev. Genet. 11, 843–854 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Carriers of rare missense variants in IFIH1 are protected from psoriasis. J. Invest. Dermatol. 130, 2768–2772 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, Y., Andersen, G. H. L., Santorico, S. A. & Spritz, R. A. Multiple functional variants of IFIH1, a gene involved in triggering innate immune responses, protect against vitiligo. J. Invest. Dermatol. 137, 522–524 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emdin, C. A. et al. Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nat. Commun. 9, 1613 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minikel, E. V., Painter, J. L., Dong, C. C. & Nelson, M. R. Refining the impact of genetic evidence on clinical success. Nature 629, 624–629 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porath, H. T., Knisbacher, B. A., Eisenberg, E. & Levanon, E. Y. Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol. 18, 185 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, Y., Cohen, H. Y. & Levanon, E. Y. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol. 15, R5 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blango, M. G. & Bass, B. L. Identification of the long, edited dsRNAome of LPS-stimulated immune cells. Genome Res. 26, 852–862 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porath, H. T., Carmi, S. & Levanon, E. Y. A genome-wide map of hyper-edited RNA reveals numerous new sites. Nat. Commun. 5, 4726 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen-Fultheim, R. & Levanon, E. Y. Detection of A-to-I hyper-edited RNA sequences. Methods Mol. Biol. 2181, 213–227 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walkley, C. R. & Li, J. B. Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol. 18, 205 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfaller, C. K., Donohue, R. C., Nersisyan, S., Brodsky, L. & Cattaneo, R. Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLoS Biol. 16, e2006577 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson, S. R. et al. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol. Spectr. 3, MDNA3-0061-2014 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Herrmann, M. et al. TSniffer: unbiased de novo identification of RNA editing sites and quantification of editing activity in RNA-seq data. Preprint at bioRxiv https://doi.org/10.1101/2024.11.13.621086 (2024).

  • Ahmad, S., Mu, X. & Hur, S. The role of RNA editing in the immune response. Methods Mol. Biol. 2181, 287–307 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiley, C. A., Steinman, R. A. & Wang, Q. Innate immune activation without immune cell infiltration in brains of murine models of Aicardi–Goutières syndrome. Brain Pathol. 33, e13118 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X. et al. An AGS-associated mutation in ADAR1 catalytic domain results in early-onset and MDA5-dependent encephalopathy with IFN pathway activation in the brain. J. Neuroinflammation 19, 285 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X. et al. Aicardi–Goutières syndrome-associated mutation at ADAR1 gene locus activates innate immune response in mouse brain. J. Neuroinflammation 18, 169 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morita, M. et al. Gene-targeted mice lacking the Trex1 (DNase III) 3′ → 5′ DNA exonuclease develop inflammatory myocarditis. Mol. Cell Biol. 24, 6719–6727 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar