• Turro, E. et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 583, 96–102 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smedley, D. et al. 100,000 Genomes pilot on rare-disease diagnosis in health care—preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nisar, H. et al. Whole-genome sequencing as a first-tier diagnostic framework for rare genetic diseases. Exp. Biol. Med. (Maywood) 246, 2610–2617 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Office of Genomics and Precision Public Health, Centers for Disease Control and Prevention. Tier 1 genomics applications and their importance to public health. CDC https://archive.cdc.gov/www_cdc_gov/genomics/implementation/toolkit/tier1.htm (2014).

  • Sturm, A. C. et al. Clinical genetic testing for familial hypercholesterolemia: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 72, 662–680 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, C. H. et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J. Am. Coll. Radiol. 7, 18–27 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Nelson, H. D. et al. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the U.S. Preventive Services Task Force recommendation. Ann. Intern. Med. 160, 255–266 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Schmidt, R. J. et al. Recommendations for risk allele evidence curation, classification, and reporting from the ClinGen Low Penetrance/Risk Allele Working Group. Genet. Med. 26, 101036 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuchenbaecker, K. B. et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317, 2402–2416 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beutler, E., Felitti, V. J., Koziol, J. A., Ho, N. J. & Gelbart, T. Penetrance of 845G→A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet 359, 211–218 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Van Driest, S. L. et al. Association of arrhythmia-related genetic variants with phenotypes documented in electronic medical records. JAMA 315, 47–57 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forrest, I. S. et al. Population-based penetrance of deleterious clinical variants. JAMA 327, 350–359 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, D. T. et al. ACMG SF v3.1 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 24, 1407–1414 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amendola, L. M. et al. Performance of ACMG–AMP variant-interpretation guidelines among nine laboratories in the Clinical Sequencing Exploratory Research Consortium. Am. J. Hum. Genet. 98, 1067–1076 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, N. et al. Identification of misclassified ClinVar variants via disease population prevalence. Am. J. Hum. Genet. 102, 609–619 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, N. et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N. Engl. J. Med. 372, 341–350 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulati, A. et al. Hypomorphic PKD1 alleles impact disease variability in autosomal dominant polycystic kidney disease. Kidney360 4, 387–392 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zernant, J. et al. Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes. Cold Spring Harb. Mol. Case Stud. 4, a002733 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zschocke, J., Byers, P. H. & Wilkie, A. O. M. Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat. Rev. Genet. 24, 442–463 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharo, A. G., Zou, Y., Adhikari, A. N. & Brenner, S. E. ClinVar and HGMD genomic variant classification accuracy has improved over time, as measured by implied disease burden. Genome Med. 15, 51 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alirezaie, N., Kernohan, K. D., Hartley, T., Majewski, J. & Hocking, T. D. ClinPred: prediction tool to identify disease-relevant nonsynonymous single-nucleotide variants. Am. J. Hum. Genet. 103, 474–483 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. et al. CAPICE: a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations. Genome Med. 12, 75 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agaoglu, N. B. et al. Consistency of variant interpretations among bioinformaticians and clinical geneticists in hereditary cancer panels. Eur. J. Hum. Genet. 30, 378–383 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giles, H. H. et al. The science and art of clinical genetic variant classification and its impact on test accuracy. Annu. Rev. Genomics Hum. Genet. 22, 285–307 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, S. et al. Sources of discordance among germ-line variant classifications in ClinVar. Genet. Med. 19, 1118–1126 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehm, H. L. et al. ClinGen—the Clinical Genome Resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, J. et al. Reinterpretation of common pathogenic variants in ClinVar revealed a high proportion of downgrades. Sci. Rep. 10, 331 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, N., Cooper, A., Dockery, A. & O’Byrne, J. J. Variant reclassification and clinical implications. J. Med. Genet. 61, 207–211 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venner, E. et al. The frequency of pathogenic variation in the All of Us cohort reveals ancestry-driven disparities. Commun. Biol. 7, 174 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chirita-Emandi, A. et al. Challenges in reporting pathogenic/potentially pathogenic variants in 94 cancer predisposing genes—in pediatric patients screened with NGS panels. Sci. Rep. 10, 223 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, J. Z., Delmar, M., Lundby, A. & Olesen, M. S. Reevaluation of genetic variants previously associated with arrhythmogenic right ventricular cardiomyopathy integrating population-based cohorts and proteomics data. Clin. Genet. 96, 506–514 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Rooij, J. et al. Reduced penetrance of pathogenic ACMG variants in a deeply phenotyped cohort study and evaluation of ClinVar classification over time. Genet. Med. 22, 1812–1820 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milko, L. V. et al. Development of Clinical Domain Working Groups for the Clinical Genome Resource (ClinGen): lessons learned and plans for the future. Genet. Med. 21, 987–993 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Landrum, M. J. & Kattman, B. L. ClinVar at five years: delivering on the promise. Hum. Mutat. 39, 1623–1630 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Landrum, M. J. et al. ClinVar: updates to support classifications of both germline and somatic variants. Nucleic Acids Res. 53, D1313–D1321 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Pottinger, T. D. et al. Pathogenic and uncertain genetic variants have clinical cardiac correlates in diverse biobank participants. J. Am. Heart Assoc. 9, e013808 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, R. A. et al. Frequency, penetrance, and variable expressivity of dilated cardiomyopathy-associated putative pathogenic gene variants in UK Biobank participants. Circulation 146, 110–124 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourfiss, M. et al. Prevalence and disease expression of pathogenic and likely pathogenic variants associated with inherited cardiomyopathies in the general population. Circ. Genom. Precis. Med. 15, e003704 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manrai, A. K. et al. Genetic misdiagnoses and the potential for health disparities. N. Engl. J. Med. 375, 655–665 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blair, D. R. & Risch, N. Dissecting the reduced penetrance of putative loss-of-function variants in population-scale biobanks. Preprint at medRxiv https://doi.org/10.1101/2024.09.23.24314008 (2024).

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon, A. S. et al. Consideration of disease penetrance in the selection of secondary findings gene–disease pairs: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 26, 101142 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shekari, S. et al. Penetrance of pathogenic genetic variants associated with premature ovarian insufficiency. Nat. Med. 29, 1692–1699 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huerta-Chagoya, A. et al. Rare variant analyses in 51,256 type 2 diabetes cases and 370,487 controls reveal the pathogenicity spectrum of monogenic diabetes genes. Nat. Genet. 56, 2370–2379 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyne, H. O. et al. Mono- and biallelic variant effects on disease at biobank scale. Nature 613, 519–525 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Q., Gorevic, P., Shen, B. & Gibson, G. Genetically transitional disease: a new concept in genomic medicine. Trends Genet. 39, 98–108 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barton, A. R., Hujoel, M. L. A., Mukamel, R. E., Sherman, M. A. & Loh, P.-R. A spectrum of recessiveness among Mendelian disease variants in UK Biobank. Am. J. Hum. Genet. 109, 1298–1307 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bychkovsky, B. L. et al. Prevalence and spectrum of pathogenic variants among patients with multiple primary cancers evaluated by clinical characteristics. Cancer 128, 1275–1283 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat. Commun. 11, 3635 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, C. F. et al. Guidance for estimating penetrance of monogenic disease-causing variants in population cohorts. Nat. Genet. 56, 1772–1779 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zschocke, J., Byers, P. H. & Wilkie, A. O. M. Gregor Mendel and the concepts of dominance and recessiveness. Nat. Rev. Genet. 23, 387–388 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tavtigian, S. V. et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet. Med. 20, 1054–1060 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plon, S. E. et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 29, 1282–1291 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroncke, B. M. et al. A Bayesian method to estimate variant-induced disease penetrance. PLoS Genet. 16, e1008862 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, D. et al. A Bayesian framework for efficient and accurate variant prediction. PLoS ONE 13, e0203553 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruklisa, D., Ware, J. S., Walsh, R., Balding, D. J. & Cook, S. A. Bayesian models for syndrome- and gene-specific probabilities of novel variant pathogenicity. Genome Med. 7, 5 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGurk, K. A. et al. The penetrance of rare variants in cardiomyopathy-associated genes: a cross-sectional approach to estimating penetrance for secondary findings. Am. J. Hum. Genet. 110, 1482–1495 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, M. J. et al. Continuous Bayesian variant interpretation accounts for incomplete penetrance among Mendelian cardiac channelopathies. Genet. Med. 25, 100355 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • O’Neill, M. J. et al. Multiplexed assays of variant effect and automated patch clamping improve KCNH2-LQTS variant classification and cardiac event risk stratification. Circulation 150, 1869–1881 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Ruberu, T. L. M., Braun, D., Parmigiani, G. & Biswas, S. Bayesian meta-analysis of penetrance for cancer risk. Biometrics 80, ujae038 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benn, D. E. et al. Bayesian approach to determining penetrance of pathogenic SDH variants. J. Med. Genet. 55, 729–734 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buhr, L. & Schicktanz, S. Individual benefits and collective challenges: experts’ views on data-driven approaches in medical research and healthcare in the German context. Big Data Soc. https://doi.org/10.1177/20539517221092653 (2022).

    Article 

    Google Scholar
     

  • Longo, D. L. & Drazen, J. M. Data sharing. N. Engl. J. Med. 374, 276–277 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Torkamani, A., Andersen, K. G., Steinhubl, S. R. & Topol, E. J. High-definition medicine. Cell 170, 828–843 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foreman, J. et al. DECIPHER: improving genetic diagnosis through dynamic integration of genomic and clinical data. Annu. Rev. Genomics Hum. Genet. 24, 151–176 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison, J. E., Weber, S., Jakob, R. & Chute, C. G. ICD-11: an international classification of diseases for the twenty-first century. BMC Med. Inform. Decis. Mak. 21, 206 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gargano, M. A. et al. The Human Phenotype Ontology in 2024: phenotypes around the world. Nucleic Acids Res. 52, D1333–D1346 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mighton, C. et al. From the patient to the population: use of genomics for population screening. Front. Genet. 13, 893832 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foss, K. S. et al. The rise of population genomic screening: characteristics of current programs and the need for evidence regarding optimal implementation. J. Pers. Med. 12, 692 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, M. F., Evans, J. P. & Khoury, M. J. DNA-based population screening: potential suitability and important knowledge gaps. JAMA 323, 307–308 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rowley, S. M. et al. Population-based genetic testing of asymptomatic women for breast and ovarian cancer susceptibility. Genet. Med. 21, 913–922 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khoury, M. J. et al. A collaborative translational research framework for evaluating and implementing the appropriate use of human genome sequencing to improve health. PLoS Med. 15, e1002631 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien, T. D. et al. Population screening shows risk of inherited cancer and familial hypercholesterolemia in Oregon. Am. J. Hum. Genet. 110, 1249–1265 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dikilitas, O. et al. Familial hypercholesterolemia in the electronic medical records and genomics network: prevalence, penetrance, cardiovascular risk, and outcomes after return of results. Circ. Genom. Precis. Med. 16, e003816 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denny, J. C. et al. The ‘All of Us’ research program. N. Engl. J. Med. 381, 668–676 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lacaze, P., Manchanda, R. & Green, R. C. Prioritizing the detection of rare pathogenic variants in population screening. Nat. Rev. Genet. 24, 205–206 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lacaze, P. A. et al. Population DNA screening for medically actionable disease risk in adults. Med. J. Aust. 216, 278–280 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grzymski, J. J. et al. Population genetic screening efficiently identifies carriers of autosomal dominant diseases. Nat. Med. 26, 1235–1239 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dias, R. & Torkamani, A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 11, 70 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aradhya, S. et al. Applications of artificial intelligence in clinical laboratory genomics. Am. J. Med. Genet. C Semin. Med. Genet. 193, e32057 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amann, R. I. et al. Toward unrestricted use of public genomic data. Science 363, 350–352 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castellani, C. et al. CFTR2: how will it help care? Paediatr. Respir. Rev. 14, 2–5 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Sollis, E. et al. The NHGRI–EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abul-Husn, N. S. & Kenny, E. E. Personalized medicine and the power of electronic health records. Cell 177, 58–69 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsons, M. T. et al. Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: an ENIGMA resource to support clinical variant classification. Hum. Mutat. 40, 1557–1578 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mighton, C. et al. Variant classification changes over time in BRCA1 and BRCA2. Genet. Med. 21, 2248–2254 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • de Andrade, K. C. et al. Variable population prevalence estimates of germline TP53 variants: a gnomAD-based analysis. Hum. Mutat. 40, 97–105 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Davidson, A. L. et al. Analysis of hereditary cancer gene variant classifications from ClinVar indicates a need for regular reassessment of clinical assertions. Hum. Mutat. 43, 2054–2062 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar