• Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An, R. et al. Non-enzymatic depurination of nucleic acids: factors and mechanisms. PLoS ONE 9, e115950 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flajnik, M. Comparative analyses of immunoglobulin genes: surprises and portents. Nat. Rev. Immunol. 2, 688–698 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGinn, J. & Marraffini, L. Molecular mechanisms of CRISPR–Cas spacer acquisition. Nat. Rev. Microbiol. 17, 7–12 (2018).

    Article 

    Google Scholar
     

  • Hoeijmakers, J. H., Frasch, A. C., Bernards, A., Borst, P. & Cross, G. A. Novel expression-linked copies of the genes for variant surface antigens in trypanosomes. Nature 284, 78–80 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beerman, S. Chromatin-Diminution bei Copepoden. Chromosoma 10, 504–514 (1959).

    Article 

    Google Scholar
     

  • Selker, E. U. & Garrett, P. W. DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc. Natl Acad. Sci. USA 85, 6870–6874 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rees, A. R. Understanding the human antibody repertoire. MAbs 12, 1729683 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soto, C. S. et al. High frequency of shared clonotypes in human B cell receptor repertoires. Nature 566, 398–402 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boveri, T. Uber Differenzierung der Zellkerne wahrend der Furchung des Eies von Ascaris megalocephala. Anatomischer Anz. 2, 688–693 (1887).


    Google Scholar
     

  • Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Cumbers, S. J. et al. Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nat. Biotechnol. 20, 1129–1134 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article 
    PubMed 

    Google Scholar
     

  • Bowman, E. J., Kendle, R. & Bowman, B. J. Disruption of vma-1, the gene encoding the catalytic subunit of the vacuolar H+-ATPase, causes severe morphological changes in Neurospora crassa. J. Biol. Chem. 275, 167–176 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayashi, A. & Mochizuki, K. Targeted gene disruption by ectopic induction of DNA elimination in Tetrahymena. Genetics 201, 55–64 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heng, Y. C., Kitano, S., Susanto, A. V., Foo, J. L. & Chang, M. W. Tunable cell differentiation via reprogrammed mating-type switching. Nat. Commun. 15, 8163 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, P. & Bankhead, T. Breaking a barrier: in trans vlsE recombination and genetic manipulation of the native vlsE gene of the Lyme disease pathogen. PLoS Pathog. 21, e1012871 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Z. X. et al. Rapid and efficient CRISPR/Cas9-based mating-type switching of Saccharomyces cerevisiae. G3 8, 173–183 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S.-C. et al. Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering. Proc. Natl Acad. Sci. USA 109, 3299–3304 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manders, F., van Boxtel, R. & Middelkamp, S. The dynamics of somatic mutagenesis during life in humans. Front. Aging 2, 802407 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dedukh, D. & Krasikova, A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol. Rev. Camb. Philos. Soc. 97, 195–216 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oren, M. et al. Individual sea urchin coelomocytes undergo somatic immune gene diversification. Front. Immunol. 10, 1298 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barela Hudgell, M. A., Momtaz, F., Jafri, A., Alekseyev, M. A. & Smith, L. C. Local genomic instability of the SpTransformer gene family in the purple sea urchin inferred from BAC insert deletions. Genes 15, 222 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suberbielle, E. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci. 16, 613–621 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caldecott, K. W., Ward, M. E. & Nussenzweig, A. The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nat. Genet. 54, 115–120 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magee, A. M. et al. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res. 20, 1700–1710 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timoshevskiy, V. A., Timoshevskaya, N. Y. & Smith, J. J. Germline-specific repetitive elements in programmatically eliminated chromosomes of the sea lamprey (Petromyzon marinus). Genes 10, 832 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, J. J., Antonacci, F., Eichler, E. E. & Amemiya, C. T. Programmed loss of millions of base pairs from a vertebrate genome. Proc. Natl Acad. Sci. USA 106, 11212–11217 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S.-M., Adema, C. M., Kepler, T. B. & Loker, E. S. Diversification of Ig superfamily genes in an invertebrate. Science 305, 251–254 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cullis, C. A. Mechanisms and control of rapid genomic changes in flax. Ann. Bot. 95, 201–206 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, J. O., Kumon, T. & Yamashita, Y. M. rDNA magnification is a unique feature of germline stem cells. Proc. Natl Acad. Sci. USA 120, e2314440120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Comparative genome analysis of programmed DNA elimination in nematodes. Genome Res. 27, 2001–2014 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez de la Rosa, P. M. et al. A telomere-to-telomere assembly of Oscheius tipulae and the evolution of rhabditid nematode chromosomes. G3 11, jkaa020 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rey, C., Launay, C., Wenger, E. & Delattre, M. Programmed DNA elimination in Mesorhabditis nematodes. Curr. Biol. 33, 3711–3721 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nemetschke, L., Eberhardt, A. G., Hertzberg, H. & Streit, A. Genetics, chromatin diminution, and sex chromosome evolution in the parasitic nematode genus Strongyloides. Curr. Biol. 20, 1687–1696 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estrem, B. & Wang, J. Programmed DNA elimination in the parasitic nematode Ascaris. PLoS Pathog. 19, e1011087 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, C., Wyngaard, G., Walton, D. B., Wichman, H. A. & Mueller, R. L. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development. BMC Genomics 15, 186 (2014).


    Google Scholar
     

  • Kojima, N. F. et al. Whole chromosome elimination and chromosome terminus elimination both contribute to somatic differentiation in Taiwanese hagfish Paramyxine sheni. Chromosome Res. 18, 383–400 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakai, Y., Kubota, S. & Kohno, S. Chromatin diminution and chromosome elimination in four Japanese hagfish species. Cytogenet. Cell Genet. 56, 196–198 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ammermann, D. Morphology and development of the macronuclei of the ciliates Stylonychia mytilus and Euplotes aediculatus. Chromosoma 33, 209–238 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prescott, D. M. & Murti, K. G. Chromosome structure in ciliated protozoans. Cold Spring Harb. Symp. Quant. Biol. 38, 609–618 (1974).

    CAS 

    Google Scholar
     

  • Swart, E. C. et al. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol. 11, e1001473 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158, 1187–1198 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hozumi, N. & Tonegawa, S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl Acad. Sci. USA 73, 3628–3632 (1976).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chien, Y. H., Gascoigne, N. R., Kavaler, J., Lee, N. E. & Davis, M. M. Somatic recombination in a murine T-cell receptor gene. Nature 309, 322–326 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watson, C. T. et al. Complete haplotype sequence of the human immunoglobulin heavy-chain variable, diversity, and joining genes and characterization of allelic and copy-number variation. Am. J. Hum. Genet. 92, 530–546 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baudry, C. et al. PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev. 23, 2478–2483 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C., Zhang, Y., Liu, C. C. & Schatz, D. G. Structural insights into the evolution of the RAG recombinase. Nat. Rev. Immunol. 22, 353–370 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowacki, M. et al. A functional role for transposases in a large eukaryotic genome. Science 324, 935–938 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, C.-Y., Vogt, A., Mochizuki, K. & Yao, M.-C. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol. Biol. Cell 21, 1753–1762 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dockendorff, T. C. et al. The nematode Oscheius tipulae as a genetic model for programmed DNA elimination. Curr. Biol. 32, 5083–5098 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 110, 689–699 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, W., Wang, X., Bracht, J. R., Nowacki, M. & Landweber, L. F. Piwi-interacting RNAs protect DNA against loss during Oxytricha genome rearrangement. Cell 151, 1243–1255 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, Y. et al. Differential chromosomal localization of centromeric histone CENP-A contributes to nematode programmed DNA elimination. Cell Rep. 16, 2308–2316 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapusta, A. et al. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining. PLoS Genet. 7, e1002049 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grawunder, U. et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388, 492–495 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, I.-T., Chao, J.-L. & Yao, M.-C. An essential role for the DNA breakage-repair protein Ku80 in programmed DNA rearrangements in Tetrahymena thermophila. Mol. Biol. Cell 23, 2213–2225 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, L. & Yu, K. Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells. J. Exp. Med. 205, 2745–2753 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, K. & Lieber, M. R. Current insights into the mechanism of mammalian immunoglobulin class switch recombination. Crit. Rev. Biochem. Mol. Biol. 54, 333–351 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bétermier, M., Klobutcher, L. A. & Orias, E. Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends. Microbiol. Mol. Biol. Rev. 87, e0018422 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Charmant, O. et al. The PIWI-interacting protein Gtsf1 controls the selective degradation of small RNAs in Paramecium. Nucleic Acids Res. 53, gkae1055 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Nowacki, M. et al. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451, 153–158 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sellis, D. et al. Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLoS Biol. 19, e3001309 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stavnezer, J., Guikema, J. E. J. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gellert, M. Recent advances in understanding V(D)J recombination. Adv. Immunol. 64, 39–64 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, Q. & Yao, M. New telomere formation coupled with site-specific chromosome breakage in Tetrahymena thermophila. Mol. Cell. Biol. 16, 1267–1274 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Estrem, B., Davis, R. E. & Wang, J. End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. Nucleic Acids Res. 52, 8913–8929 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schutt, E., Hołyńska, M. & Wyngaard, G. A. Genome size in cyclopoid copepods (Copepoda: Cyclopoida): chromatin diminution as a hypothesized mechanism of evolutionary constraint. J. Crustac. Biol. 41, ruab043 (2021).


    Google Scholar
     

  • Teng, G. & Papavasiliou, F. N. Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 41, 107–120 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vink, C., Rudenko, G. & Seifert, H. S. Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol. Rev. 36, 917–948 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haas, R. & Meyer, T. F. The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44, 107–115 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Centurion-Lara, A. et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection: tprK gene conversion. Mol. Microbiol. 52, 1579–1596 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. R., Hardham, J. M., Barbour, A. G. & Norris, S. J. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89, 275–285 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faria, J., Briggs, E. M., Black, J. A. & McCulloch, R. Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr. Opin. Microbiol. 70, 102209 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keneskhanova, Z. et al. Genomic determinants of antigen expression hierarchy in African trypanosomes. Nature https://doi.org/10.1038/s41586-025-08720-w (2025).

  • Wada, M. & Nakamura, Y. Antigenic variation by telomeric recombination of major-surface-glycoprotein genes of Pneumocystis carinii. J. Eukaryot. Microbiol. 43, 8S (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48, 379–388 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson, C. B. & Neiman, P. E. Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell 48, 369–378 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagawa, F. et al. Antigen-receptor genes of the agnathan lamprey are assembled by a process involving copy choice. Nat. Immunol. 8, 206–213 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sutoh, Y. & Kasahara, M. The immune system of jawless vertebrates: insights into the prototype of the adaptive immune system. Immunogenetics 73, 5–16 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laurent, M. et al. Evolution of a trypanosome surface antigen gene repertoire linked to non-duplicative gene activation. Nature 308, 370–373 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cross, G. A. M., Kim, H.-S. & Wickstead, B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol. Biochem. Parasitol. 195, 59–73 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hicks, J. B. & Herskowitz, I. Interconversion of yeast mating types II. Restoration of mating ability to sterile mutants in homothallic and heterothallic strains. Genetics 85, 373–393 (1977).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haber, J. E. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191, 33–64 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oshima, Y. & Takano, I. Mating types in Saccharomyces: their convertibility and homothallism. Genetics 67, 327–335 (1971).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egel, R. & Gutz, H. Gene activation by copy transposition in mating-type switching of a homothallic fission yeast. Curr. Genet. 3, 5–12 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arcangioli, B. & Gangloff, S. The fission yeast mating-type switching motto: ‘one-for-two’ and ‘two-for-one’. Microbiol. Mol. Biol. Rev. 87, e0000821 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hicks, W. M., Kim, M. & Haber, J. E. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329, 82–85 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, S. A. & Davies, J. K. Pilin gene variation in Neisseria gonorrhoeae: reassessing the old paradigms. FEMS Microbiol. Rev. 33, 521–530 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cook, A. J. L. et al. DNA-dependent protein kinase inhibits AID-induced antibody gene conversion. PLoS Biol. 5, e80 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohzaki, M. et al. DNA polymerases ν and θ are required for efficient immunoglobulin V gene diversification in chicken. J. Cell Biol. 189, 1117–1127 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonawala, U. et al. A gene with a thousand alleles: the hyper-variable effectors of plant-parasitic nematodes. Cell Genom. 4, 100580 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR–Cas immunity. BMC Biol. 12, 36 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trzilova, D. & Tamayo, R. Site-specific recombination — how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations. Trends Genet. 37, 59–72 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wright, A. V. et al. Structures of the CRISPR genome integration complex. Science 357, 1113–1118 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuñez, J. K., Bai, L., Harrington, L. B., Hinder, T. L. & Doudna, J. A. CRISPR immunological memory requires a host factor for specificity. Mol. Cell 62, 824–833 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Sekulovic, O. et al. Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genet. 14, e1007332 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chanin, R. B. et al. Intragenic DNA inversions expand bacterial coding capacity. Nature 634, 234–242 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badel, C., Da Cunha, V. & Oberto, J. Archaeal tyrosine recombinases. FEMS Microbiol. Rev. 45, fuab004 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zieg, J., Silverman, M., Hilmen, M. & Simon, M. Recombinational switch for gene expression. Science 196, 170–172 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stokes, H. W. & Hall, R. M. A novel family of potentially mobile DNA elements encoding site‐specific gene‐integration functions: integrons. Mol. Microbiol. 3, 1669–1683 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Escudero, J. A., Loot, C., Nivina, A. & Mazel, D. The integron: adaptation on demand. In Mobile DNA III 139–161 (American Society of Microbiology, 2015).

  • Ghaly, T. M. et al. Discovery of integrons in archaea: platforms for cross-domain gene transfer. Sci. Adv. 8, eabq6376 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fluit, A. C. & Schmitz, F.-J. Resistance integrons and super-integrons. Clin. Microbiol. Infect. 10, 272–288 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falbo, V. et al. Antibiotic resistance conferred by a conjugative plasmid and a class I integron in Vibrio cholerae O1 El Tor strains isolated in Albania and Italy. Antimicrob. Agents Chemother. 43, 693–696 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golden, J. W., Mulligan, M. E. & Haselkorn, R. Different recombination site specificity of two developmentally regulated genome rearrangements. Nature 327, 526–529 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, C. M. & Grossman, A. D. Integrative and conjugative elements (ICEs): what they do and how they work. Annu. Rev. Genet. 49, 577–601 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franke, A. E. & Clewell, D. B. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of ‘conjugal’ transfer in the absence of a conjugative plasmid. J. Bacteriol. 145, 494–502 (1981).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burt, A. & Koufopanou, V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr. Opin. Genet. Dev. 14, 609–615 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacquier, A. & Dujon, B. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41, 383–394 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craig, N. L. et al. (eds.) Mobile DNA III (ASM Press & Wiley, 2020).

  • Kleinstein, S. H., Louzoun, Y. & Shlomchik, M. J. Estimating hypermutation rates from clonal tree data. J. Immunol. 171, 4639–4649 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Repeat-induced point mutation in Neurospora crassa causes the highest known mutation rate and mutational burden of any cellular life. Genome Biol. 21, 142 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naorem, S. S. et al. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA. Proc. Natl Acad. Sci. USA 114, E10187–E10195 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freitag, M., Williams, R. L., Kothe, G. O. & Selker, E. U. A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc. Natl Acad. Sci. USA 99, 8802–8807 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. K., Davis, M. M., Sinn, E., Patten, P. & Hood, L. Antibody diversity: somatic hypermutation of rearranged VH genes. Cell 27, 573–581 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251–262 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chi, X., Li, Y., & Qi, X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 160, 233–247 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, K. AID function in somatic hypermutation and class switch recombination. Acta Biochim. Biophys. Sin. 54, 759–766 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horns, F., Petit, E., Yockteng, R. & Hood, M. E. Patterns of repeat-induced point mutation in transposable elements of basidiomycete fungi. Genome Biol. Evol. 4, 240–247 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gladyshev, E. & Kleckner, N. Direct recognition of homology between double helices of DNA in Neurospora crassa. Nat. Commun. 5, 3509 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gladyshev, E. Repeat-induced point mutation and other genome defense mechanisms in fungi. In The Fungal Kingdom 687–699 (ASM, 2017).

  • Foss, E. J., Garrett, P. W., Kinsey, J. A. & Selker, E. U. Specificity of repeat-induced point mutation (RIP) in Neurospora: sensitivity of non-Neurospora sequences, a natural diverged tandem duplication, and unique DNA adjacent to a duplicated region. Genetics 127, 711–717 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhoades, N. et al. Recombination-independent recognition of DNA homology for meiotic silencing in Neurospora crassa. Proc. Natl Acad. Sci. USA 118, e2108664118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295, 2091–2094 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macadangdang, B. R., Makanani, S. K. & Miller, J. F. Accelerated evolution by diversity-generating retroelements. Annu. Rev. Microbiol. 76, 389–411 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doulatov, S. et al. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431, 476–481 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, H. et al. Diversity-generating retroelement homing regenerates target sequences for repeated rounds of codon rewriting and protein diversification. Mol. Cell 31, 813–823 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Handa, S. et al. RNA control of reverse transcription in a diversity-generating retroelement. Nature 638, 1122–1129 (2025).

  • Esnault, C. et al. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433, 430–433 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Coq, J. & Ghosh, P. Conservation of the C-type lectin fold for massive sequence variation in a Treponema diversity-generating retroelement. Proc. Natl Acad. Sci. USA 108, 14649–14653 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doré, H. et al. Targeted hypermutation of putative antigen sensors in multicellular bacteria. Proc. Natl Acad. Sci. USA 121, e2316469121 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roux, S. et al. Ecology and molecular targets of hypermutation in the global microbiome. Nat. Commun. 12, 3076 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prucca, C. G. et al. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456, 750–754 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strathern, J. et al. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31, 183–192 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajaei, N., Chiruvella, K. K., Lin, F. & Aström, S. U. Domesticated transposase Kat1 and its fossil imprints induce sexual differentiation in yeast. Proc. Natl Acad. Sci. USA 111, 15491–15496 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smyshlyaev, G., Bateman, A. & Barabas, O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol. Syst. Biol. 17, e9880 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rogozin, I. B. et al. Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID–APOBEC family cytosine deaminase. Nat. Immunol. 8, 647–656 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morimoto, R. et al. Cytidine deaminase 2 is required for VLRB antibody gene assembly in lampreys. Sci. Immunol. 5, eaba0925 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arakawa, H., Hauschild, J. & Buerstedde, J.-M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris, R. S., Sale, J. E., Petersen-Mahrt, S. K. & Neuberger, M. S. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol. 12, 435–438 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haber, J. E. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561–599 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willis, T. G. & Dyer, M. J. S. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 96, 808–822 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, M. M. et al. An immunoglobulin heavy-chain gene is formed by at least two recombinational events. Nature 283, 733–739 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, R. A., Upton, H. E., Vogan, J. M. & Collins, K. Telomerase mechanism of telomere synthesis. Annu. Rev. Biochem. 86, 439–460 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mimori, T. et al. Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis–scleroderma overlap. J. Clin. Invest. 68, 611–620 (1981).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24, 4639–4648 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deriano, L. & Roth, D. B. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47, 433–455 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nassif, N., Penney, J., Pal, S., Engels, W. R. & Gloor, G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14, 1613–1625 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehta, A. & Haber, J. E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 6, a016428 (2014).


    Google Scholar
     

  • Beard, W. A., Horton, J. K., Prasad, R. & Wilson, S. H. Eukaryotic base excision repair: new approaches shine light on mechanism. Annu. Rev. Biochem. 88, 137–162 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iyer, R. R., Pluciennik, A., Burdett, V. & Modrich, P. L. DNA mismatch repair: functions and mechanisms. Chem. Rev. 106, 302–323 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ensminger, M. et al. DNA breaks and chromosomal aberrations arise when replication meets base excision repair. J. Cell Biol. 206, 29–43 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar