• Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    CAS 

    Google Scholar
     

  • Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).


    Google Scholar
     

  • Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).


    Google Scholar
     

  • Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    CAS 

    Google Scholar
     

  • Collard, I. F. & Foley, R. A. Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules? Evol. Ecol. Res. 4, 371–383 (2002).


    Google Scholar
     

  • Chong, K. Y. et al. Are terrestrial biological invasions different in the tropics? Annu. Rev. Ecol. Evol., Syst. 52, 291–314 (2021).


    Google Scholar
     

  • Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    CAS 

    Google Scholar
     

  • Pagad, S., Genovesi, P., Carnevali, L., Schigel, D. & McGeoch, M. A. Introducing the global register of introduced and invasive species. Sci. Data 5, 170202 (2018).


    Google Scholar
     

  • Lomolino, M., Riddle, B. & Whittaker, R. Biogeography (Oxford Univ. Press, 2017).

  • Bond, W. J. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16, 261–266 (2005).


    Google Scholar
     

  • Pausas, J. G. & Bond, W. J. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. Evol. 35, 767–775 (2020).


    Google Scholar
     

  • Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

    CAS 

    Google Scholar
     

  • Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008).

    CAS 

    Google Scholar
     

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS 

    Google Scholar
     

  • Roy, H. E., Pauchard, A., Stoett, P. & Truong, T. R. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment: Full Report (IPBES, 2023).

  • Lenzner, B. et al. Naturalized alien floras still carry the legacy of European colonialism. Nat. Ecol. Evol. 6, 1723–1732 (2022).


    Google Scholar
     

  • Nackley, L. L., West, A. G., Skowno, A. L. & Bond, W. J. The nebulous ecology of native invasions. Trends Ecol. Evol. 32, 814–824 (2017).


    Google Scholar
     

  • Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a Neotropical forest by native Cerrado and exotic pasture grasses. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120427 (2013).


    Google Scholar
     

  • Hulme, P. E. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 3: Drivers Affecting Biological Invasions (IPBES, 2024).

  • Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).


    Google Scholar
     

  • Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain. 6, 1237–1247 (2023).


    Google Scholar
     

  • Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).


    Google Scholar
     

  • Levine, J. M., Adler, P. B. & Yelenik, S. G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7, 975–989 (2004).


    Google Scholar
     

  • Lyon, C. et al. Climate change research and action must look beyond 2100. Glob. Change Biol. 28, 349–361 (2022).

    CAS 

    Google Scholar
     

  • Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).

    CAS 

    Google Scholar
     

  • Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).


    Google Scholar
     

  • Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Change Biol. 21, 4128–4140 (2015).


    Google Scholar
     

  • Wilkinson, D. M. The parable of green mountain: ascension island, ecosystem construction and ecological fitting. J. Biogeogr. 31, 1–4 (2004).


    Google Scholar
     

  • Hobbs, R. J., Higgs, E. S. & Hall, C. Novel Ecosystems: Intervening in the New Ecological World Order (Wiley 2013).

  • Kerr, M. R., Ordonez, A., Riede, F. & Svenning, J.-C. A biogeographic–macroecological perspective on the rising novelty of the biosphere in the Anthropocene. J. Biogeogr. 51, 575–587 (2024).


    Google Scholar
     

  • Seebens, H. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 2: Trends and Status of Alien and Invasive Alien Species (IPBES, 2024).

  • Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of Late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).


    Google Scholar
     

  • Erickson, D. L., Smith, B. D., Clarke, A. C., Sandweiss, D. H. & Tuross, N. An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc. Natl Acad. Sci. USA 102, 18315–18320 (2005).

    CAS 

    Google Scholar
     

  • Lev-Yadun, S., Gopher, A. & Abbo, S. The cradle of agriculture. Science 288, 1602–1603 (2000).

    CAS 

    Google Scholar
     

  • van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).


    Google Scholar
     

  • Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).

    CAS 

    Google Scholar
     

  • Richardson, D. M. Forestry trees as invasive aliens. Conserv. Biol. 12, 18–26 (1998).


    Google Scholar
     

  • Essl, F. et al. A conceptual framework for range-expanding species that track human-induced environmental change. BioScience 69, 908–919 (2019).


    Google Scholar
     

  • Svenning, J.-C., Kerr, M. R., Mungi, N. A., Ordonez, A. & Riede, F. Defining the Anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action. One Earth 7, 1678–1681 (2024).


    Google Scholar
     

  • Davis, M. A. Biotic globalization: does competition from introduced species threaten biodiversity? BioScience 53, 481–489 (2003).


    Google Scholar
     

  • Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat. Ecol. Evol. 8, 1216–1223 (2024).


    Google Scholar
     

  • Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).

    CAS 

    Google Scholar
     

  • Pfadenhauer, W. G. & Bradley, B. A. Quantifying vulnerability to plant invasion across global ecosystems. Ecol. Appl. 34, e3031 (2024).


    Google Scholar
     

  • Elton, C. S. The Ecology of Invasions by Animals and Plants (Univ. Chicago Press, 1958).

  • Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Role of species richness and human impacts in resisting invasive species in tropical forests. J. Ecol. 109, 3308–3321 (2021).


    Google Scholar
     

  • Delavaux, C. S. et al. Native diversity buffers against severity of non-native tree invasions. Nature 621, 773–781 (2023).

    CAS 

    Google Scholar
     

  • Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).


    Google Scholar
     

  • Nunez-Mir, G. C. et al. Biotic resistance to exotic invasions: its role in forest ecosystems, confounding artifacts, and future directions. Biol. Invasions 19, 3287–3299 (2017).


    Google Scholar
     

  • Han, X. et al. Effects of logging on the ecological strategy spectrum of a tropical montane rain forest. Ecol. Indic. 128, 107812 (2021).


    Google Scholar
     

  • Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).

    CAS 

    Google Scholar
     

  • He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).


    Google Scholar
     

  • Hempson, G. P., Archibald, S. & Bond, W. J. The consequences of replacing wildlife with livestock in Africa. Sci. Rep. 7, 17196 (2017).


    Google Scholar
     

  • Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150305 (2016).


    Google Scholar
     

  • Sriramamurthy, R. T., Bhalla, R. S., & Sankaran, M. Fire differentially affects mortality and seedling regeneration of three woody invaders in forest–grassland mosaics of the southern Western Ghats, India. Biol. Invasions 22, 1623–1634 (2020).


    Google Scholar
     

  • Alba, C., Skálová, H., McGregor, K. F., D’Antonio, C. & Pyšek, P. Native and exotic plant species respond differently to wildfire and prescribed fire as revealed by meta-analysis. J. Veg. Sci. 26, 102–113 (2015).


    Google Scholar
     

  • Richardson, D. M. et al. Human-mediated introductions of Australian acacias — a global experiment in biogeography. Divers. Distrib. 17, 771–787 (2011).


    Google Scholar
     

  • Schwab, S. T., Jenerette, G. D. & Larios, L. Prescribed burning may produce refugia for invasive forb, Oncosiphon pilulifer. Restor. Ecol. 31, e13922 (2023).


    Google Scholar
     

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS 

    Google Scholar
     

  • Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prism. Extinct. 2, e5 (2024).


    Google Scholar
     

  • Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).


    Google Scholar
     

  • Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).

    CAS 

    Google Scholar
     

  • Bradley, B. A. et al. Observed and potential range shifts of native and nonnative species with climate change. Annu. Rev. Ecol. Evol., Syst. 55, 23–40 (2024).


    Google Scholar
     

  • Trepel, J. et al. Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. Nat. Ecol. Evol. 8, 705–716 (2024).


    Google Scholar
     

  • Mungi, N. A., Jhala, Y. V., Qureshi, Q., le Roux, E. & Svenning, J.-C. Megaherbivores provide biotic resistance against alien plant dominance. Nat. Ecol. Evol. 7, 1645–1653 (2023).


    Google Scholar
     

  • Pires, M. M. & Galetti, M. Beyond the “empty forest”: the defaunation syndromes of Neotropical forests in the Anthropocene. Glob. Ecol. Conserv. 41, e02362 (2023).


    Google Scholar
     

  • Bogoni, J. A., Peres, C. A., Navarro, A. B., Carvalho-Rocha, V. & Galetti, M. Using historical habitat loss to predict contemporary mammal extirpations in Neotropical forests. Conserv. Biol. 38, e14245 (2024).


    Google Scholar
     

  • Abernethy, K. A., Coad, L., Taylor, G., Lee, M. E. & Maisels, F. Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120303 (2013).

    CAS 

    Google Scholar
     

  • Parker, J. D., Burkepile, D. E. & Hay, M. E. Opposing effects of native and exotic herbivores on plant invasions. Science 311, 1459–1461 (2006).

    CAS 

    Google Scholar
     

  • Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).


    Google Scholar
     

  • Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).

    CAS 

    Google Scholar
     

  • Waddell, E. H. et al. Land-use change and propagule pressure promote plant invasions in tropical rainforest remnants. Landsc. Ecol. 35, 1891–1906 (2020).


    Google Scholar
     

  • Kohli, R. K., Batish, D. R., Singh, J. S., Singh, H. P. & Bhatt, J. R. in Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent (eds. Kohli, R. K. et al.) 1–9 (CABI, 2011).

  • Rodrigues, A. A. et al. Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Glob. Change Biol. 28, 6807–6822 (2022).

    CAS 

    Google Scholar
     

  • Mazzochini, G. G. et al. Effects of grass functional diversity on invasion success by exotic grasses in Cerrado grasslands. J. Appl. Ecol. 61, 271–280 (2024).


    Google Scholar
     

  • Silva, R. G., Zenni, R. D., Rosse, V. P., Bastos, L. S. & van den Berg, E. Landscape-level determinants of the spread and impact of invasive grasses in protected areas. Biol. Invasions 22, 3083–3099 (2020).


    Google Scholar
     

  • Brondizio, E. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Global Assessment Report on Biodiversity and Ecosystem Services. Chapter 1: Assessing a Planet in Transformation: Rationale and Approach of the IPBES Global Assessment on Biodiversity and Ecosystem Services (IPBES, 2019).

  • Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).


    Google Scholar
     

  • Engert, J. E. et al. Ghost roads and the destruction of Asia–Pacific tropical forests. Nature 629, 370–375 (2024).

    CAS 

    Google Scholar
     

  • Siqueira-Gay, J. & Sánchez, L. E. The outbreak of illegal gold mining in the Brazilian Amazon boosts deforestation. Reg. Environ. Change 21, 28 (2021).


    Google Scholar
     

  • Devine, J. A. et al. Narco-degradation: cocaine trafficking’s environmental impacts in Central America’s protected areas. World Dev. 144, 105474 (2021).


    Google Scholar
     

  • Butsic, V., Baumann, M., Shortland, A., Walker, S. & Kuemmerle, T. Conservation and conflict in the Democratic Republic of Congo: the impacts of warfare, mining, and protected areas on deforestation. Biol. Conserv. 191, 266–273 (2015).


    Google Scholar
     

  • Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).

    CAS 

    Google Scholar
     

  • IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) https://doi.org/10.1017/9781009157896.001 (Cambridge Univ. Press, 2021).

  • Walther, G.-R. et al. Alien species in a warmer world: risks and opportunities. Trends Ecol. Evol. 24, 686–693 (2009).


    Google Scholar
     

  • Turton, S. M. Expansion of the tropics: revisiting frontiers of geographical knowledge. Geogr. Res. 55, 3–12 (2017).


    Google Scholar
     

  • Bellard, C. et al. Will climate change promote future invasions? Glob. Change Biol. 19, 3740–3748 (2013).


    Google Scholar
     

  • de Lima, R. A. F. et al. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nat. Commun. 11, 6347 (2020).


    Google Scholar
     

  • Zwiener, V. P., Lira-Noriega, A., Grady, C. J., Padial, A. A. & Vitule, J. R. S. Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob. Ecol. Biogeogr. 27, 298–309 (2018).


    Google Scholar
     

  • Haider, S. et al. Think globally, measure locally: the MIREN standardized protocol for monitoring species distributions along elevation gradients. Ecol. Evol. 12, e8590 (2022).


    Google Scholar
     

  • Mungi, N. A., Coops, N. C., Ramesh, K. & Rawat, G. S. How global climate change and regional disturbance can expand the invasion risk? Case study of Lantana camara invasion in the Himalaya. Biol. Invasions 20, 1849–1863 (2018).


    Google Scholar
     

  • Smith, S. D. et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408, 79–82 (2000).

    CAS 

    Google Scholar
     

  • Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Change Biol. 6, 865–869 (2000).


    Google Scholar
     

  • Camarero, P. Exotic vine invasions following cyclone disturbance in Australian wet tropics rainforests: a review. Austral. Ecol. 44, 1359–1372 (2019).


    Google Scholar
     

  • Jiménez, M. A. et al. Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities. Ecol. Lett. 14, 1227–1235 (2011).


    Google Scholar
     

  • Tovar, C., Infantas, E. S. & Roth, V. T. Plant community dynamics of lomas fog oasis of Central Peru after the extreme precipitation caused by the 1997–98 El Niño event. PLoS ONE 13, e0190572 (2018).


    Google Scholar
     

  • Wijesundara, S. in Invasive Alien Species in Sri Lanka — Strengthening Capacity to Control Their Introduction and Spread (eds Marambe, B., Silva, P., Wijesundara, S. & Atapattu, N.) 27–38 (Biodiversity Secretariat of the Ministry of Environment, 2010).

  • Bonnamour, A., Gippet, J. M. W. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24, 2418–2426 (2021).


    Google Scholar
     

  • Pyšek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017).


    Google Scholar
     

  • Spear, M. J., Walsh, J. R., Ricciardi, A. & Zanden, M. J. V. The invasion ecology of sleeper populations: prevalence, persistence, and abrupt shifts. BioScience 71, 357–369 (2021).


    Google Scholar
     

  • Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27, 970–982 (2021).

    CAS 

    Google Scholar
     

  • Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019).


    Google Scholar
     

  • Cox, G. W. Alien Species in North America and Hawaii (Island Press, 1999).


    Google Scholar
     

  • Zenni, R. D. et al. in Global Plant Invasions (eds Clements, D. R., Upadhyaya, M. K., Joshi, S. & Shrestha, A.) 187–208 (Springer, 2022).

  • Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Distribution, drivers and restoration priorities of plant invasions in India. J. Appl. Ecol. 60, 2400–2412 (2023).


    Google Scholar
     

  • Pagad, S. et al. Country compendium of the global register of introduced and invasive species. Sci. Data 9, 391 (2022).


    Google Scholar
     

  • Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions 19, 3489–3503 (2017).


    Google Scholar
     

  • Williams, D. G. & Baruch, Z. African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biol. Invasions 2, 123–140 (2000).


    Google Scholar
     

  • Foxcroft, L. C., Richardson, D. M., Rejmánek, M. & Pyšek, P. Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects. Biol. Invasions 12, 3913–3933 (2010).


    Google Scholar
     

  • MacDougall, A. S. & Turkington, R. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86, 42–55 (2005).


    Google Scholar
     

  • Wan, J.-Z., Wang, C.-J. & Yu, F.-H. Risk hotspots for terrestrial plant invaders under climate change at the global scale. Environ. Earth Sci. 75, 1012 (2016).


    Google Scholar
     

  • Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Expanding niche and degrading forests: key to the successful global invasion of Lantana camara (sensu lato). Glob. Ecol. Conserv. 23, e01080 (2020).


    Google Scholar
     

  • Mungi, N. A., Rastogi, R., Qureshi, Q. & Jhala, Y. V. Plant Invasions and Restoration Priorities in India. Status of Tigers, Co-predators and Prey in India, 2022 (National Tiger Conservation Authority, 2023).

  • Summerhayes, C. P. et al. The future extent of the Anthropocene epoch: a synthesis. Glob. Planet. Change 242, 104568 (2024).


    Google Scholar
     

  • Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).

    CAS 

    Google Scholar
     

  • Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022).

    CAS 

    Google Scholar
     

  • Trew, B. T., Lees, A. C., Edwards, D. P., Early, R. & Maclean, I. M. D. Identifying climate-smart tropical key biodiversity areas for protection in response to widespread temperature novelty. Conserv. Lett. 6, e13050 (2024).


    Google Scholar
     

  • Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    CAS 

    Google Scholar
     

  • D’Antonio, C. M. & Vitousek, P. M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23, 63–87 (1992).


    Google Scholar
     

  • Balch, J. K. et al. The susceptibility of Southeastern Amazon forests to fire: insights from a large-scale burn experiment. BioScience 65, 893–905 (2015).


    Google Scholar
     

  • Salazar, L. F., Nobre, C. A. & Oyama, M. D. Climate change consequences on the biome distribution in tropical South America. Geophys. Res. Lett. 34, L09708 (2007).


    Google Scholar
     

  • Marimon, B. S. et al. Disequilibrium and hyperdynamic tree turnover at the forest–Cerrado transition zone in southern Amazonia. Plant. Ecol. Divers. 7, 281–292 (2014).


    Google Scholar
     

  • Sales, L. P., Galetti, M. & Pires, M. M. Climate and land-use change will lead to a faunal “savannization” on tropical rainforests. Glob. Change Biol. 26, 7036–7044 (2020).


    Google Scholar
     

  • Bottino, M. J. et al. Amazon savannization and climate change are projected to increase dry season length and temperature extremes over Brazil. Sci. Rep. 14, 5131 (2024).

    CAS 

    Google Scholar
     

  • Butt, E. W. et al. Amazon deforestation causes strong regional warming. Proc. Natl Acad. Sci. USA 120, e2309123120 (2023).

    CAS 

    Google Scholar
     

  • Saye, L. et al. Planetary Solvency — Finding our Balance with Nature. Global Risk Management for Human Prosperity (Univ. Exeter, 2025).

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    CAS 

    Google Scholar
     

  • Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).


    Google Scholar
     

  • Scholes, R. J. & Archer, S. R. Tree–grass interactions in savannas. Annu. Rev. Ecol., Evol., Syst. 28, 517–544 (1997).


    Google Scholar
     

  • Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B Biol. Sci. 367, 601–612 (2012).

    CAS 

    Google Scholar
     

  • Brundu, G. et al. Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota 61, 65–116 (2020).


    Google Scholar
     

  • Charbonneau, B. R., Wootton, L. S., Wnek, J. P., Langley, J. A. & Posner, M. A. A species effect on storm erosion: invasive sedge stabilized dunes more than native grass during Hurricane Sandy. J. Appl. Ecol. 54, 1385–1394 (2017).


    Google Scholar
     

  • Zatout, M. M. M. The Roles of Exotic and Native Tree Species in Preventing Desertification and Enhancing Degraded Land Restoration in the North East of Libya. Reciprocal Effects of Environmental Factors and Plantation Forestry on Each Other, Assessed by Observations on Growth and Reproductive Success of Relevant Tree Species, and Environmental Factors Analysed Using Multivariate Statistics. PhD thesis (Univ. Bradford, 2013).

  • Shackleton, R. T., Le Maitre, D. C., Pasiecznik, N. M. & Richardson, D. M. Prosopis: a global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants 6, plu027 (2014).


    Google Scholar
     

  • Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    CAS 

    Google Scholar
     

  • Vergara-Tabares, D. L., Blendinger, P. G., Tello, A., Peluc, S. I. & Tecco, P. A. Fleshy-fruited invasive shrubs indirectly increase native tree seed dispersal. Oikos 2022, (2022).

  • Jhala, Y. V. Seasonal effects on the nutritional ecology of blackbuck Antelope cervicapra. J. Appl. Ecol. 34, 1348–1358 (1997).


    Google Scholar
     

  • Lemoine, R. T. & Svenning, J.-C. Nativeness is not binary — a graduated terminology for native and non-native species in the Anthropocene. Restor. Ecol. 8, e13636 (2022).


    Google Scholar
     

  • Bacher, S. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 4: Impacts of Invasive Alien Species on Nature, Nature’s Contributions to People, and Good Quality of Life (IPBES, 2024).

  • McCary, M. A., Mores, R., Farfan, M. A. & Wise, D. H. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis. Ecol. Lett. 19, 328–335 (2016).


    Google Scholar
     

  • Fletcher, R. A. et al. Invasive plants negatively impact native, but not exotic, animals. Glob. Change Biol. 25, 3694–3705 (2019).


    Google Scholar
     

  • Castro-Díez, P. et al. Global effects of non-native tree species on multiple ecosystem services. Biol. Rev. 94, 1477–1501 (2019).


    Google Scholar
     

  • Vimercati, G., Kumschick, S., Probert, A. F., Volery, L. & Bacher, S. The importance of assessing positive and beneficial impacts of alien species. NeoBiota 62, 525–545 (2020).


    Google Scholar
     

  • Blackburn, T. M. et al. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12, e1001850 (2014).


    Google Scholar
     

  • Vimercati, G. et al. The EICAT+ framework enables classification of positive impacts of alien taxa on native biodiversity. PLoS Biol. 20, e3001729 (2022).

    CAS 

    Google Scholar
     

  • Rosenzweig, M. L. The four questions: what does the introduction of exotic species do to diversity? Evol. Ecol. Res. 3, 361–367 (2001).


    Google Scholar
     

  • Fricke, E. C. & Svenning, J.-C. Accelerating homogenization of the global plant–frugivore meta-network. Nature 585, 74–78 (2020).

    CAS 

    Google Scholar
     

  • Rosenzweig, M. L. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA 98, 5404–5410 (2001).

    CAS 

    Google Scholar
     

  • Xu, W.-B. et al. Regional occupancy increases for widespread species but decreases for narrowly distributed species in metacommunity time series. Nat. Commun. 14, 1463 (2023).

    CAS 

    Google Scholar
     

  • Blowes, S. A. et al. Synthesis reveals approximately balanced biotic differentiation and homogenization. Sci. Adv. 10, eadj9395 (2024).


    Google Scholar
     

  • Fridley, J. D. et al. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88, 3–17 (2007).

    CAS 

    Google Scholar
     

  • Rastogi, R., Qureshi, Q., Shrivastava, A. & Jhala, Y. V. Multiple invasions exert combined magnified effects on native plants, soil nutrients and alters the plant–herbivore interaction in dry tropical forest. For. Ecol. Manag. 531, 120781 (2023).


    Google Scholar
     

  • Cornell, H. V. & Lawton, J. H. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J. Anim. Ecol. 61, 1–12 (1992).


    Google Scholar
     

  • Cooper, D. L. M. et al. Consistent patterns of common species across tropical tree communities. Nature 625, 728–734 (2024).

    CAS 

    Google Scholar
     

  • Terborgh, J. At 50, Janzen–Connell has come of age. BioScience 70, 1082–1092 (2020).


    Google Scholar
     

  • ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).


    Google Scholar
     

  • Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).


    Google Scholar
     

  • Rojas-Sandoval, J., Ackerman, J. D., Marcano-Vega, H. & Willig, M. R. Alien species affect the abundance and richness of native species in tropical forests: the role of adaptive strategies. Ecosphere 13, e4291 (2022).


    Google Scholar
     

  • Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    CAS 

    Google Scholar
     

  • Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Botany 100, 1266–1286 (2013).


    Google Scholar
     

  • Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).


    Google Scholar
     

  • Santos, P. M. Biotic homogenization in tree communities of tropical forests: a systematic review. Rev. Científica Multidisciplinar Núcleo Conhecimento 04, 50–77 (2023).


    Google Scholar
     

  • Pinho, B. X. et al. Winner–loser plant trait replacements in human-modified tropical forests. Nat. Ecol. Evol. 9, 282–295 (2024).


    Google Scholar
     

  • Joshi, A. A., Ratnam, J. & Sankaran, M. Frost maintains forests and grasslands as alternate states in a montane tropical forest–grassland mosaic; but alien tree invasion and warming can disrupt this balance. J. Ecol. 108, 122–132 (2020).


    Google Scholar
     

  • Hopple, A. M. et al. Massive peatland carbon banks vulnerable to rising temperatures. Nat. Commun. 11, 2373 (2020).

    CAS 

    Google Scholar
     

  • Cummings, J. A., Parker, I. M. & Gilbert, G. S. Allelopathy: a tool for weed management in forest restoration. Plant. Ecol. 213, 1975–1989 (2012).


    Google Scholar
     

  • Funk, J. L. & McDaniel, S. Altering light availability to restore invaded forest: the predictive role of plant traits. Restor. Ecol. 18, 865–872 (2010).


    Google Scholar
     

  • Guyton, J. A. et al. Trophic rewilding revives biotic resistance to shrub invasion. Nat. Ecol. Evol. 4, 712–724 (2020).


    Google Scholar
     

  • Lundgren, E. J. et al. Functional traits — not nativeness — shape the effects of large mammalian herbivores on plant communities. Science 383, 531–537 (2024).

    CAS 

    Google Scholar
     

  • Morris, T. L., Barger, N. N. & Cramer, M. D. Generalist Indigenous herbivores resist alien tree invasion: Rhabdomys pumilio limits establishment of Acacia cyclops. Biol. Invasions 24, 1427–1437 (2022).


    Google Scholar
     

  • Sankaran, K. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 5: Management; Challenges, Opportunities and Lessons Learned (IPBES, 2024).

  • Manning, A. D., Gordon, I. J., Massei, G. & Wimpenny, C. Rewilding herbivores: too much or little of a good thing? Trends Ecol. Evol. 39, 787–789 (2024).


    Google Scholar
     

  • Griffiths, C. J. et al. The use of extant non-indigenous tortoises as a restoration tool to replace extinct ecosystem engineers. Restor. Ecol. 18, 1–7 (2010).


    Google Scholar
     

  • Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl Acad. Sci. USA 117, 7871–7878 (2020).

    CAS 

    Google Scholar
     

  • Svenning, J.-C., Buitenwerf, R. & Le Roux, E. Trophic rewilding as a restoration approach under emerging novel biosphere conditions. Curr. Biol. 34, R435–R451 (2024).

    CAS 

    Google Scholar
     

  • Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    CAS 

    Google Scholar
     

  • Vellend, M. et al. Plant biodiversity change across scales during the Anthropocene. Annu. Rev. Plant. Biol. 68, 563–586 (2017).

    CAS 

    Google Scholar
     

  • Liu, Y. et al. Do invasive alien plants benefit more from global environmental change than native plants? Glob. Change Biol. 23, 3363–3370 (2017).


    Google Scholar
     

  • Le Roux, J. J. The Evolutionary Ecology of Invasive Species (Academic Press, 2021).

  • Dlugosch, K. M. & Parker, I. M. Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol. Lett. 11, 701–709 (2008).


    Google Scholar
     

  • Mackin, C. R., Peña, J. F., Blanco, M. A., Balfour, N. J. & Castellanos, M. C. Rapid evolution of a floral trait following acquisition of novel pollinators. J. Ecol. 109, 2234–2246 (2021).


    Google Scholar
     

  • Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J. & Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9, 981–993 (2006).


    Google Scholar
     

  • Davidson, A. M., Jennions, M. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis: invasive species have higher phenotypic plasticity. Ecol. Lett. 14, 419–431 (2011).


    Google Scholar
     

  • Smith, A. L. et al. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proc. Natl Acad. Sci. USA 117, 4218–4227 (2020).

    CAS 

    Google Scholar
     

  • Montúfar, R., Louise, C. & Tranbarger, T. Elaeis oleifera (Kunth) Cortés: a neglected palm from the Ecuadorian Amazon. Ecuadorian J. Med. Biol. Sci. 39, 584 (2018).


    Google Scholar
     

  • Fehr, V., Buitenwerf, R. & Svenning, J.-C. Non-native palms (Arecaceae) as generators of novel ecosystems: a global assessment. Divers. Distrib. 26, 1523–1538 (2020).


    Google Scholar
     

  • Hormaza, P., Fuquen, E. M. & Romero, H. M. Phenology of the oil palm interspecific hybrid Elaeis oleifera × Elaeis guineensis. Sci. Agric. 69, 275–280 (2012).


    Google Scholar
     

  • Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawaiʻi. Science 364, 78–82 (2019).

    CAS 

    Google Scholar
     

  • Vitousek, P. M. & Walker, L. R. Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol. Monogr. 59, 247–265 (1989).


    Google Scholar
     

  • Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Soil carbon in tropical savannas mostly derived from grasses. Nat. Geosci. 16, 710–716 (2023).


    Google Scholar
     

  • Coetsee, C., Bond, W. J. & February, E. C. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162, 1027–1034 (2010).


    Google Scholar
     

  • Rossiter, N. A., Setterfield, S. A., Douglas, M. M. & Hutley, L. B. Testing the grass–fire cycle: alien grass invasion in the tropical savannas of northern Australia. Divers. Distrib. 9, 169–176 (2003).


    Google Scholar
     

  • Beringer, J. et al. Fire in Australian savannas: from leaf to landscape. Glob. Change Biol. 21, 62–81 (2015).


    Google Scholar
     

  • Mendonça Filho, S. F., Queiroz de Brito, G., Rodrigues de Melo Murta, J. & Salemi, L. F. Invasion in the riparian zone: what is the effect of Pteridium arachnoideum on topsoil permeability? Acta Oecol. 117, 103867 (2022).


    Google Scholar
     

  • Fusco, E. J. et al. The emerging invasive species and climate-change lexicon. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2024.08.005 (2024).

  • Sax, D. F., Schlaepfer, M. A. & Olden, J. D. Valuing the contributions of non-native species to people and nature. Trends Ecol. Evol. 37, 1058–1066 (2022).


    Google Scholar
     

  • Ordonez, A., Riede, F., Normand, S. & Svenning, J.-C. Towards a novel biosphere in 2300: rapid and extensive global and biome-wide climatic novelty in the Anthropocene. Philos. Trans. R. Soc. B Biol. Sci. 379, 20230022 (2024).


    Google Scholar
     

  • Lynch, A. J. et al. Managing for RADical ecosystem change: applying the resist-accept-direct (RAD) framework. Front. Ecol. Environ. 19, 461–469 (2021).


    Google Scholar
     

  • Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 29, 119–141 (2021).


    Google Scholar
     

  • Kopf, R. K. et al. Confronting the risks of large-scale invasive species control. Nat. Ecol. Evol. 1, 0172 (2017).


    Google Scholar
     

  • Rettberg, S. & Müller-Mahn, D. in Changing Deserts — Integrating People and their Environments (eds Mol, L. & Sternberg, T.) 297–316 (Whitehorse Press, 2012).

  • Mungi, N. A., Gloria, A. O., Rastogi, R. & Svenning, J.-C. Expanding the resist–accept–direct framework for developing nature-based solutions and societal adaptations to biological invasions. People Nat. 7, 1505–1520 (2025).


    Google Scholar
     

  • Schuurman, G. W. et al. Navigating ecological transformation: resist–accept–direct as a path to a new resource management paradigm. BioScience 72, 16–29 (2022).


    Google Scholar
     

  • McGeoch, M. A., Clarke, D. A., Mungi, N. A. & Ordonez, A. A nature-positive future with biological invasions: theory, decision support and research needs. Philos. Trans. R. Soc. B Biol. Sci. 379, 20230014 (2024).


    Google Scholar
     

  • GBIF occurrence download. GBIF.org https://doi.org/10.15468/dl.fm2tnm (2025).

  • McGeoch, M. A. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 6: Governance and Policy Options for the Management of Biological Invasions (IPBES, 2024).

  • United Nations Environment Programme & Food and Agriculture Organization of the United Nations. The UN Decade on Ecosystem Restoration (2021–2030): Flagship Initiatives (UNEP & FAO, 2022).

  • Andrijevic, M., Crespo Cuaresma, J., Muttarak, R. & Schleussner, C.-F. Governance in socioeconomic pathways and its role for future adaptive capacity. Nat. Sustain. 3, 35–41 (2020).


    Google Scholar
     

  • Bucchorn, M. et al. Copernicus global land service: land cover 100 m: collection 3: epoch 2018: globe (V3.0.1). Zenodo https://doi.org/10.5281/zenodo.3518038 (2020).

  • Federico, G. & Tena-Junguito, A. A tale of two globalizations: gains from trade and openness 1800–2010. Rev. World Econ. 153, 601–626 (2017).


    Google Scholar
     

  • GBIF occurrence download. GBIF.org https://doi.org/10.15468/dl.57kf2n (2025).

  • McGeoch, M. A. et al. Global indicators of biological invasion: species numbers, biodiversity impact and policy responses: invasive alien species indicator: 2010 biodiversity target. Diver. Distrib. 16, 95–108 (2010).


    Google Scholar
     

  • Pauchard, A., Aguayo, M., Peña, E. & Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol. Conserv. 127, 272–281 (2006).


    Google Scholar
     

  • Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).


    Google Scholar
     

  • Seebens, H. et al. Biological invasions on Indigenous peoples’ lands. Nat. Sustain. 7, 737–746 (2024).


    Google Scholar
     

  • Pfeiffer, J. M. & Voeks, R. A. Biological invasions and biocultural diversity: linking ecological and cultural systems. Environ. Conserv. 35, 281–293 (2008).


    Google Scholar
     

  • Ticktin, T., Whitehead, A. N. & Fraiola, H. Traditional gathering of native hula plants in alien-invaded Hawaiian forests: adaptive practices, impacts on alien invasive species and conservation implications. Environ. Conserv. 33, 185–194 (2006).


    Google Scholar
     

  • Kannan, R., Shackleton, C. M. & Shaanker, R. U. Invasive alien species as drivers in socio-ecological systems: local adaptations towards use of Lantana in Southern India. Environ. Dev. Sustain. 16, 649–669 (2014).


    Google Scholar
     

  • Miththapala, S. International Union for Conservation of Nature. A Strategy for Addressing Issues of Aquatic Invasive Alien Species in the Lower Mekong Basin (IUCN, 2007).

  • Barber, D. & Glass, P. in Indigenous People and Invasive Species: Perceptions, Management, Challenges and Uses (eds Ens, E. J., Fisher, J. & Costello, O.) (IUCN, 2015).