Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).
Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).
Collard, I. F. & Foley, R. A. Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules? Evol. Ecol. Res. 4, 371–383 (2002).
Chong, K. Y. et al. Are terrestrial biological invasions different in the tropics? Annu. Rev. Ecol. Evol., Syst. 52, 291–314 (2021).
Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
Pagad, S., Genovesi, P., Carnevali, L., Schigel, D. & McGeoch, M. A. Introducing the global register of introduced and invasive species. Sci. Data 5, 170202 (2018).
Lomolino, M., Riddle, B. & Whittaker, R. Biogeography (Oxford Univ. Press, 2017).
Bond, W. J. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16, 261–266 (2005).
Pausas, J. G. & Bond, W. J. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. Evol. 35, 767–775 (2020).
Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).
Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008).
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
Roy, H. E., Pauchard, A., Stoett, P. & Truong, T. R. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment: Full Report (IPBES, 2023).
Lenzner, B. et al. Naturalized alien floras still carry the legacy of European colonialism. Nat. Ecol. Evol. 6, 1723–1732 (2022).
Nackley, L. L., West, A. G., Skowno, A. L. & Bond, W. J. The nebulous ecology of native invasions. Trends Ecol. Evol. 32, 814–824 (2017).
Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a Neotropical forest by native Cerrado and exotic pasture grasses. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120427 (2013).
Hulme, P. E. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 3: Drivers Affecting Biological Invasions (IPBES, 2024).
Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).
Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain. 6, 1237–1247 (2023).
Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).
Levine, J. M., Adler, P. B. & Yelenik, S. G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7, 975–989 (2004).
Lyon, C. et al. Climate change research and action must look beyond 2100. Glob. Change Biol. 28, 349–361 (2022).
Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).
Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).
Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Change Biol. 21, 4128–4140 (2015).
Wilkinson, D. M. The parable of green mountain: ascension island, ecosystem construction and ecological fitting. J. Biogeogr. 31, 1–4 (2004).
Hobbs, R. J., Higgs, E. S. & Hall, C. Novel Ecosystems: Intervening in the New Ecological World Order (Wiley 2013).
Kerr, M. R., Ordonez, A., Riede, F. & Svenning, J.-C. A biogeographic–macroecological perspective on the rising novelty of the biosphere in the Anthropocene. J. Biogeogr. 51, 575–587 (2024).
Seebens, H. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 2: Trends and Status of Alien and Invasive Alien Species (IPBES, 2024).
Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of Late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).
Erickson, D. L., Smith, B. D., Clarke, A. C., Sandweiss, D. H. & Tuross, N. An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc. Natl Acad. Sci. USA 102, 18315–18320 (2005).
Lev-Yadun, S., Gopher, A. & Abbo, S. The cradle of agriculture. Science 288, 1602–1603 (2000).
van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).
Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).
Richardson, D. M. Forestry trees as invasive aliens. Conserv. Biol. 12, 18–26 (1998).
Essl, F. et al. A conceptual framework for range-expanding species that track human-induced environmental change. BioScience 69, 908–919 (2019).
Svenning, J.-C., Kerr, M. R., Mungi, N. A., Ordonez, A. & Riede, F. Defining the Anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action. One Earth 7, 1678–1681 (2024).
Davis, M. A. Biotic globalization: does competition from introduced species threaten biodiversity? BioScience 53, 481–489 (2003).
Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat. Ecol. Evol. 8, 1216–1223 (2024).
Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).
Pfadenhauer, W. G. & Bradley, B. A. Quantifying vulnerability to plant invasion across global ecosystems. Ecol. Appl. 34, e3031 (2024).
Elton, C. S. The Ecology of Invasions by Animals and Plants (Univ. Chicago Press, 1958).
Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Role of species richness and human impacts in resisting invasive species in tropical forests. J. Ecol. 109, 3308–3321 (2021).
Delavaux, C. S. et al. Native diversity buffers against severity of non-native tree invasions. Nature 621, 773–781 (2023).
Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).
Nunez-Mir, G. C. et al. Biotic resistance to exotic invasions: its role in forest ecosystems, confounding artifacts, and future directions. Biol. Invasions 19, 3287–3299 (2017).
Han, X. et al. Effects of logging on the ecological strategy spectrum of a tropical montane rain forest. Ecol. Indic. 128, 107812 (2021).
Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).
He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).
Hempson, G. P., Archibald, S. & Bond, W. J. The consequences of replacing wildlife with livestock in Africa. Sci. Rep. 7, 17196 (2017).
Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150305 (2016).
Sriramamurthy, R. T., Bhalla, R. S., & Sankaran, M. Fire differentially affects mortality and seedling regeneration of three woody invaders in forest–grassland mosaics of the southern Western Ghats, India. Biol. Invasions 22, 1623–1634 (2020).
Alba, C., Skálová, H., McGregor, K. F., D’Antonio, C. & Pyšek, P. Native and exotic plant species respond differently to wildfire and prescribed fire as revealed by meta-analysis. J. Veg. Sci. 26, 102–113 (2015).
Richardson, D. M. et al. Human-mediated introductions of Australian acacias — a global experiment in biogeography. Divers. Distrib. 17, 771–787 (2011).
Schwab, S. T., Jenerette, G. D. & Larios, L. Prescribed burning may produce refugia for invasive forb, Oncosiphon pilulifer. Restor. Ecol. 31, e13922 (2023).
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prism. Extinct. 2, e5 (2024).
Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).
Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).
Bradley, B. A. et al. Observed and potential range shifts of native and nonnative species with climate change. Annu. Rev. Ecol. Evol., Syst. 55, 23–40 (2024).
Trepel, J. et al. Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. Nat. Ecol. Evol. 8, 705–716 (2024).
Mungi, N. A., Jhala, Y. V., Qureshi, Q., le Roux, E. & Svenning, J.-C. Megaherbivores provide biotic resistance against alien plant dominance. Nat. Ecol. Evol. 7, 1645–1653 (2023).
Pires, M. M. & Galetti, M. Beyond the “empty forest”: the defaunation syndromes of Neotropical forests in the Anthropocene. Glob. Ecol. Conserv. 41, e02362 (2023).
Bogoni, J. A., Peres, C. A., Navarro, A. B., Carvalho-Rocha, V. & Galetti, M. Using historical habitat loss to predict contemporary mammal extirpations in Neotropical forests. Conserv. Biol. 38, e14245 (2024).
Abernethy, K. A., Coad, L., Taylor, G., Lee, M. E. & Maisels, F. Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120303 (2013).
Parker, J. D., Burkepile, D. E. & Hay, M. E. Opposing effects of native and exotic herbivores on plant invasions. Science 311, 1459–1461 (2006).
Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).
Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).
Waddell, E. H. et al. Land-use change and propagule pressure promote plant invasions in tropical rainforest remnants. Landsc. Ecol. 35, 1891–1906 (2020).
Kohli, R. K., Batish, D. R., Singh, J. S., Singh, H. P. & Bhatt, J. R. in Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent (eds. Kohli, R. K. et al.) 1–9 (CABI, 2011).
Rodrigues, A. A. et al. Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Glob. Change Biol. 28, 6807–6822 (2022).
Mazzochini, G. G. et al. Effects of grass functional diversity on invasion success by exotic grasses in Cerrado grasslands. J. Appl. Ecol. 61, 271–280 (2024).
Silva, R. G., Zenni, R. D., Rosse, V. P., Bastos, L. S. & van den Berg, E. Landscape-level determinants of the spread and impact of invasive grasses in protected areas. Biol. Invasions 22, 3083–3099 (2020).
Brondizio, E. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Global Assessment Report on Biodiversity and Ecosystem Services. Chapter 1: Assessing a Planet in Transformation: Rationale and Approach of the IPBES Global Assessment on Biodiversity and Ecosystem Services (IPBES, 2019).
Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).
Engert, J. E. et al. Ghost roads and the destruction of Asia–Pacific tropical forests. Nature 629, 370–375 (2024).
Siqueira-Gay, J. & Sánchez, L. E. The outbreak of illegal gold mining in the Brazilian Amazon boosts deforestation. Reg. Environ. Change 21, 28 (2021).
Devine, J. A. et al. Narco-degradation: cocaine trafficking’s environmental impacts in Central America’s protected areas. World Dev. 144, 105474 (2021).
Butsic, V., Baumann, M., Shortland, A., Walker, S. & Kuemmerle, T. Conservation and conflict in the Democratic Republic of Congo: the impacts of warfare, mining, and protected areas on deforestation. Biol. Conserv. 191, 266–273 (2015).
Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).
IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) https://doi.org/10.1017/9781009157896.001 (Cambridge Univ. Press, 2021).
Walther, G.-R. et al. Alien species in a warmer world: risks and opportunities. Trends Ecol. Evol. 24, 686–693 (2009).
Turton, S. M. Expansion of the tropics: revisiting frontiers of geographical knowledge. Geogr. Res. 55, 3–12 (2017).
Bellard, C. et al. Will climate change promote future invasions? Glob. Change Biol. 19, 3740–3748 (2013).
de Lima, R. A. F. et al. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nat. Commun. 11, 6347 (2020).
Zwiener, V. P., Lira-Noriega, A., Grady, C. J., Padial, A. A. & Vitule, J. R. S. Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob. Ecol. Biogeogr. 27, 298–309 (2018).
Haider, S. et al. Think globally, measure locally: the MIREN standardized protocol for monitoring species distributions along elevation gradients. Ecol. Evol. 12, e8590 (2022).
Mungi, N. A., Coops, N. C., Ramesh, K. & Rawat, G. S. How global climate change and regional disturbance can expand the invasion risk? Case study of Lantana camara invasion in the Himalaya. Biol. Invasions 20, 1849–1863 (2018).
Smith, S. D. et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408, 79–82 (2000).
Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Change Biol. 6, 865–869 (2000).
Camarero, P. Exotic vine invasions following cyclone disturbance in Australian wet tropics rainforests: a review. Austral. Ecol. 44, 1359–1372 (2019).
Jiménez, M. A. et al. Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities. Ecol. Lett. 14, 1227–1235 (2011).
Tovar, C., Infantas, E. S. & Roth, V. T. Plant community dynamics of lomas fog oasis of Central Peru after the extreme precipitation caused by the 1997–98 El Niño event. PLoS ONE 13, e0190572 (2018).
Wijesundara, S. in Invasive Alien Species in Sri Lanka — Strengthening Capacity to Control Their Introduction and Spread (eds Marambe, B., Silva, P., Wijesundara, S. & Atapattu, N.) 27–38 (Biodiversity Secretariat of the Ministry of Environment, 2010).
Bonnamour, A., Gippet, J. M. W. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24, 2418–2426 (2021).
Pyšek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017).
Spear, M. J., Walsh, J. R., Ricciardi, A. & Zanden, M. J. V. The invasion ecology of sleeper populations: prevalence, persistence, and abrupt shifts. BioScience 71, 357–369 (2021).
Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27, 970–982 (2021).
Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019).
Cox, G. W. Alien Species in North America and Hawaii (Island Press, 1999).
Zenni, R. D. et al. in Global Plant Invasions (eds Clements, D. R., Upadhyaya, M. K., Joshi, S. & Shrestha, A.) 187–208 (Springer, 2022).
Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Distribution, drivers and restoration priorities of plant invasions in India. J. Appl. Ecol. 60, 2400–2412 (2023).
Pagad, S. et al. Country compendium of the global register of introduced and invasive species. Sci. Data 9, 391 (2022).
Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions 19, 3489–3503 (2017).
Williams, D. G. & Baruch, Z. African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biol. Invasions 2, 123–140 (2000).
Foxcroft, L. C., Richardson, D. M., Rejmánek, M. & Pyšek, P. Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects. Biol. Invasions 12, 3913–3933 (2010).
MacDougall, A. S. & Turkington, R. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86, 42–55 (2005).
Wan, J.-Z., Wang, C.-J. & Yu, F.-H. Risk hotspots for terrestrial plant invaders under climate change at the global scale. Environ. Earth Sci. 75, 1012 (2016).
Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Expanding niche and degrading forests: key to the successful global invasion of Lantana camara (sensu lato). Glob. Ecol. Conserv. 23, e01080 (2020).
Mungi, N. A., Rastogi, R., Qureshi, Q. & Jhala, Y. V. Plant Invasions and Restoration Priorities in India. Status of Tigers, Co-predators and Prey in India, 2022 (National Tiger Conservation Authority, 2023).
Summerhayes, C. P. et al. The future extent of the Anthropocene epoch: a synthesis. Glob. Planet. Change 242, 104568 (2024).
Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).
Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022).
Trew, B. T., Lees, A. C., Edwards, D. P., Early, R. & Maclean, I. M. D. Identifying climate-smart tropical key biodiversity areas for protection in response to widespread temperature novelty. Conserv. Lett. 6, e13050 (2024).
Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).
D’Antonio, C. M. & Vitousek, P. M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23, 63–87 (1992).
Balch, J. K. et al. The susceptibility of Southeastern Amazon forests to fire: insights from a large-scale burn experiment. BioScience 65, 893–905 (2015).
Salazar, L. F., Nobre, C. A. & Oyama, M. D. Climate change consequences on the biome distribution in tropical South America. Geophys. Res. Lett. 34, L09708 (2007).
Marimon, B. S. et al. Disequilibrium and hyperdynamic tree turnover at the forest–Cerrado transition zone in southern Amazonia. Plant. Ecol. Divers. 7, 281–292 (2014).
Sales, L. P., Galetti, M. & Pires, M. M. Climate and land-use change will lead to a faunal “savannization” on tropical rainforests. Glob. Change Biol. 26, 7036–7044 (2020).
Bottino, M. J. et al. Amazon savannization and climate change are projected to increase dry season length and temperature extremes over Brazil. Sci. Rep. 14, 5131 (2024).
Butt, E. W. et al. Amazon deforestation causes strong regional warming. Proc. Natl Acad. Sci. USA 120, e2309123120 (2023).
Saye, L. et al. Planetary Solvency — Finding our Balance with Nature. Global Risk Management for Human Prosperity (Univ. Exeter, 2025).
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).
Scholes, R. J. & Archer, S. R. Tree–grass interactions in savannas. Annu. Rev. Ecol., Evol., Syst. 28, 517–544 (1997).
Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B Biol. Sci. 367, 601–612 (2012).
Brundu, G. et al. Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota 61, 65–116 (2020).
Charbonneau, B. R., Wootton, L. S., Wnek, J. P., Langley, J. A. & Posner, M. A. A species effect on storm erosion: invasive sedge stabilized dunes more than native grass during Hurricane Sandy. J. Appl. Ecol. 54, 1385–1394 (2017).
Zatout, M. M. M. The Roles of Exotic and Native Tree Species in Preventing Desertification and Enhancing Degraded Land Restoration in the North East of Libya. Reciprocal Effects of Environmental Factors and Plantation Forestry on Each Other, Assessed by Observations on Growth and Reproductive Success of Relevant Tree Species, and Environmental Factors Analysed Using Multivariate Statistics. PhD thesis (Univ. Bradford, 2013).
Shackleton, R. T., Le Maitre, D. C., Pasiecznik, N. M. & Richardson, D. M. Prosopis: a global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants 6, plu027 (2014).
Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).
Vergara-Tabares, D. L., Blendinger, P. G., Tello, A., Peluc, S. I. & Tecco, P. A. Fleshy-fruited invasive shrubs indirectly increase native tree seed dispersal. Oikos 2022, (2022).
Jhala, Y. V. Seasonal effects on the nutritional ecology of blackbuck Antelope cervicapra. J. Appl. Ecol. 34, 1348–1358 (1997).
Lemoine, R. T. & Svenning, J.-C. Nativeness is not binary — a graduated terminology for native and non-native species in the Anthropocene. Restor. Ecol. 8, e13636 (2022).
Bacher, S. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 4: Impacts of Invasive Alien Species on Nature, Nature’s Contributions to People, and Good Quality of Life (IPBES, 2024).
McCary, M. A., Mores, R., Farfan, M. A. & Wise, D. H. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis. Ecol. Lett. 19, 328–335 (2016).
Fletcher, R. A. et al. Invasive plants negatively impact native, but not exotic, animals. Glob. Change Biol. 25, 3694–3705 (2019).
Castro-Díez, P. et al. Global effects of non-native tree species on multiple ecosystem services. Biol. Rev. 94, 1477–1501 (2019).
Vimercati, G., Kumschick, S., Probert, A. F., Volery, L. & Bacher, S. The importance of assessing positive and beneficial impacts of alien species. NeoBiota 62, 525–545 (2020).
Blackburn, T. M. et al. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12, e1001850 (2014).
Vimercati, G. et al. The EICAT+ framework enables classification of positive impacts of alien taxa on native biodiversity. PLoS Biol. 20, e3001729 (2022).
Rosenzweig, M. L. The four questions: what does the introduction of exotic species do to diversity? Evol. Ecol. Res. 3, 361–367 (2001).
Fricke, E. C. & Svenning, J.-C. Accelerating homogenization of the global plant–frugivore meta-network. Nature 585, 74–78 (2020).
Rosenzweig, M. L. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA 98, 5404–5410 (2001).
Xu, W.-B. et al. Regional occupancy increases for widespread species but decreases for narrowly distributed species in metacommunity time series. Nat. Commun. 14, 1463 (2023).
Blowes, S. A. et al. Synthesis reveals approximately balanced biotic differentiation and homogenization. Sci. Adv. 10, eadj9395 (2024).
Fridley, J. D. et al. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88, 3–17 (2007).
Rastogi, R., Qureshi, Q., Shrivastava, A. & Jhala, Y. V. Multiple invasions exert combined magnified effects on native plants, soil nutrients and alters the plant–herbivore interaction in dry tropical forest. For. Ecol. Manag. 531, 120781 (2023).
Cornell, H. V. & Lawton, J. H. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J. Anim. Ecol. 61, 1–12 (1992).
Cooper, D. L. M. et al. Consistent patterns of common species across tropical tree communities. Nature 625, 728–734 (2024).
Terborgh, J. At 50, Janzen–Connell has come of age. BioScience 70, 1082–1092 (2020).
ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).
Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).
Rojas-Sandoval, J., Ackerman, J. D., Marcano-Vega, H. & Willig, M. R. Alien species affect the abundance and richness of native species in tropical forests: the role of adaptive strategies. Ecosphere 13, e4291 (2022).
Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Botany 100, 1266–1286 (2013).
Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).
Santos, P. M. Biotic homogenization in tree communities of tropical forests: a systematic review. Rev. Científica Multidisciplinar Núcleo Conhecimento 04, 50–77 (2023).
Pinho, B. X. et al. Winner–loser plant trait replacements in human-modified tropical forests. Nat. Ecol. Evol. 9, 282–295 (2024).
Joshi, A. A., Ratnam, J. & Sankaran, M. Frost maintains forests and grasslands as alternate states in a montane tropical forest–grassland mosaic; but alien tree invasion and warming can disrupt this balance. J. Ecol. 108, 122–132 (2020).
Hopple, A. M. et al. Massive peatland carbon banks vulnerable to rising temperatures. Nat. Commun. 11, 2373 (2020).
Cummings, J. A., Parker, I. M. & Gilbert, G. S. Allelopathy: a tool for weed management in forest restoration. Plant. Ecol. 213, 1975–1989 (2012).
Funk, J. L. & McDaniel, S. Altering light availability to restore invaded forest: the predictive role of plant traits. Restor. Ecol. 18, 865–872 (2010).
Guyton, J. A. et al. Trophic rewilding revives biotic resistance to shrub invasion. Nat. Ecol. Evol. 4, 712–724 (2020).
Lundgren, E. J. et al. Functional traits — not nativeness — shape the effects of large mammalian herbivores on plant communities. Science 383, 531–537 (2024).
Morris, T. L., Barger, N. N. & Cramer, M. D. Generalist Indigenous herbivores resist alien tree invasion: Rhabdomys pumilio limits establishment of Acacia cyclops. Biol. Invasions 24, 1427–1437 (2022).
Sankaran, K. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 5: Management; Challenges, Opportunities and Lessons Learned (IPBES, 2024).
Manning, A. D., Gordon, I. J., Massei, G. & Wimpenny, C. Rewilding herbivores: too much or little of a good thing? Trends Ecol. Evol. 39, 787–789 (2024).
Griffiths, C. J. et al. The use of extant non-indigenous tortoises as a restoration tool to replace extinct ecosystem engineers. Restor. Ecol. 18, 1–7 (2010).
Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl Acad. Sci. USA 117, 7871–7878 (2020).
Svenning, J.-C., Buitenwerf, R. & Le Roux, E. Trophic rewilding as a restoration approach under emerging novel biosphere conditions. Curr. Biol. 34, R435–R451 (2024).
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
Vellend, M. et al. Plant biodiversity change across scales during the Anthropocene. Annu. Rev. Plant. Biol. 68, 563–586 (2017).
Liu, Y. et al. Do invasive alien plants benefit more from global environmental change than native plants? Glob. Change Biol. 23, 3363–3370 (2017).
Le Roux, J. J. The Evolutionary Ecology of Invasive Species (Academic Press, 2021).
Dlugosch, K. M. & Parker, I. M. Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol. Lett. 11, 701–709 (2008).
Mackin, C. R., Peña, J. F., Blanco, M. A., Balfour, N. J. & Castellanos, M. C. Rapid evolution of a floral trait following acquisition of novel pollinators. J. Ecol. 109, 2234–2246 (2021).
Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J. & Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9, 981–993 (2006).
Davidson, A. M., Jennions, M. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis: invasive species have higher phenotypic plasticity. Ecol. Lett. 14, 419–431 (2011).
Smith, A. L. et al. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proc. Natl Acad. Sci. USA 117, 4218–4227 (2020).
Montúfar, R., Louise, C. & Tranbarger, T. Elaeis oleifera (Kunth) Cortés: a neglected palm from the Ecuadorian Amazon. Ecuadorian J. Med. Biol. Sci. 39, 584 (2018).
Fehr, V., Buitenwerf, R. & Svenning, J.-C. Non-native palms (Arecaceae) as generators of novel ecosystems: a global assessment. Divers. Distrib. 26, 1523–1538 (2020).
Hormaza, P., Fuquen, E. M. & Romero, H. M. Phenology of the oil palm interspecific hybrid Elaeis oleifera × Elaeis guineensis. Sci. Agric. 69, 275–280 (2012).
Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawaiʻi. Science 364, 78–82 (2019).
Vitousek, P. M. & Walker, L. R. Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol. Monogr. 59, 247–265 (1989).
Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).
Zhou, Y. et al. Soil carbon in tropical savannas mostly derived from grasses. Nat. Geosci. 16, 710–716 (2023).
Coetsee, C., Bond, W. J. & February, E. C. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162, 1027–1034 (2010).
Rossiter, N. A., Setterfield, S. A., Douglas, M. M. & Hutley, L. B. Testing the grass–fire cycle: alien grass invasion in the tropical savannas of northern Australia. Divers. Distrib. 9, 169–176 (2003).
Beringer, J. et al. Fire in Australian savannas: from leaf to landscape. Glob. Change Biol. 21, 62–81 (2015).
Mendonça Filho, S. F., Queiroz de Brito, G., Rodrigues de Melo Murta, J. & Salemi, L. F. Invasion in the riparian zone: what is the effect of Pteridium arachnoideum on topsoil permeability? Acta Oecol. 117, 103867 (2022).
Fusco, E. J. et al. The emerging invasive species and climate-change lexicon. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2024.08.005 (2024).
Sax, D. F., Schlaepfer, M. A. & Olden, J. D. Valuing the contributions of non-native species to people and nature. Trends Ecol. Evol. 37, 1058–1066 (2022).
Ordonez, A., Riede, F., Normand, S. & Svenning, J.-C. Towards a novel biosphere in 2300: rapid and extensive global and biome-wide climatic novelty in the Anthropocene. Philos. Trans. R. Soc. B Biol. Sci. 379, 20230022 (2024).
Lynch, A. J. et al. Managing for RADical ecosystem change: applying the resist-accept-direct (RAD) framework. Front. Ecol. Environ. 19, 461–469 (2021).
Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 29, 119–141 (2021).
Kopf, R. K. et al. Confronting the risks of large-scale invasive species control. Nat. Ecol. Evol. 1, 0172 (2017).
Rettberg, S. & Müller-Mahn, D. in Changing Deserts — Integrating People and their Environments (eds Mol, L. & Sternberg, T.) 297–316 (Whitehorse Press, 2012).
Mungi, N. A., Gloria, A. O., Rastogi, R. & Svenning, J.-C. Expanding the resist–accept–direct framework for developing nature-based solutions and societal adaptations to biological invasions. People Nat. 7, 1505–1520 (2025).
Schuurman, G. W. et al. Navigating ecological transformation: resist–accept–direct as a path to a new resource management paradigm. BioScience 72, 16–29 (2022).
McGeoch, M. A., Clarke, D. A., Mungi, N. A. & Ordonez, A. A nature-positive future with biological invasions: theory, decision support and research needs. Philos. Trans. R. Soc. B Biol. Sci. 379, 20230014 (2024).
GBIF occurrence download. GBIF.org https://doi.org/10.15468/dl.fm2tnm (2025).
McGeoch, M. A. et al. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Invasive Alien Species Assessment. Chapter 6: Governance and Policy Options for the Management of Biological Invasions (IPBES, 2024).
United Nations Environment Programme & Food and Agriculture Organization of the United Nations. The UN Decade on Ecosystem Restoration (2021–2030): Flagship Initiatives (UNEP & FAO, 2022).
Andrijevic, M., Crespo Cuaresma, J., Muttarak, R. & Schleussner, C.-F. Governance in socioeconomic pathways and its role for future adaptive capacity. Nat. Sustain. 3, 35–41 (2020).
Bucchorn, M. et al. Copernicus global land service: land cover 100 m: collection 3: epoch 2018: globe (V3.0.1). Zenodo https://doi.org/10.5281/zenodo.3518038 (2020).
Federico, G. & Tena-Junguito, A. A tale of two globalizations: gains from trade and openness 1800–2010. Rev. World Econ. 153, 601–626 (2017).
GBIF occurrence download. GBIF.org https://doi.org/10.15468/dl.57kf2n (2025).
McGeoch, M. A. et al. Global indicators of biological invasion: species numbers, biodiversity impact and policy responses: invasive alien species indicator: 2010 biodiversity target. Diver. Distrib. 16, 95–108 (2010).
Pauchard, A., Aguayo, M., Peña, E. & Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol. Conserv. 127, 272–281 (2006).
Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
Seebens, H. et al. Biological invasions on Indigenous peoples’ lands. Nat. Sustain. 7, 737–746 (2024).
Pfeiffer, J. M. & Voeks, R. A. Biological invasions and biocultural diversity: linking ecological and cultural systems. Environ. Conserv. 35, 281–293 (2008).
Ticktin, T., Whitehead, A. N. & Fraiola, H. Traditional gathering of native hula plants in alien-invaded Hawaiian forests: adaptive practices, impacts on alien invasive species and conservation implications. Environ. Conserv. 33, 185–194 (2006).
Kannan, R., Shackleton, C. M. & Shaanker, R. U. Invasive alien species as drivers in socio-ecological systems: local adaptations towards use of Lantana in Southern India. Environ. Dev. Sustain. 16, 649–669 (2014).
Miththapala, S. International Union for Conservation of Nature. A Strategy for Addressing Issues of Aquatic Invasive Alien Species in the Lower Mekong Basin (IUCN, 2007).
Barber, D. & Glass, P. in Indigenous People and Invasive Species: Perceptions, Management, Challenges and Uses (eds Ens, E. J., Fisher, J. & Costello, O.) (IUCN, 2015).