• Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet. 2013;14:125–38.

    CAS 
    PubMed 

    Google Scholar
     

  • Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet. 2011;12:363–76.

    CAS 
    PubMed 

    Google Scholar
     

  • Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470:59–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Kahveci F, Alkan C. Whole-Genome Shotgun Sequence CNV Detection Using Read Depth. Methods Mol Biol. 2018;1833:61–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Shi J, Jia Z, Sun J, Lu Q, Zhang Y, et al. Structural variants involved in high-altitude adaptation detected using single-molecule long-read sequencing. Nat Commun. 2023;14:8282.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu GE, Hou Y, Zhu B, Cardone MF, Jiang L, Cellamare A, Mitra A, Alexander LJ, Coutinho LL, Dell’Aquila ME, et al. Analysis of copy number variations among diverse cattle breeds. Genome Res. 2010;20:693–703.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu J, Hu S, Wang J, Li S, Liu B, et al. Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genomics. 2011;12:372.

    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Olivier M. Current analysis platforms and methods for detecting copy number variation. Physiol Genomics. 2013;45:1–16.

    PubMed 

    Google Scholar
     

  • Malekpour SA, Pezeshk H, Sadeghi M. MSeq-CNV: accurate detection of copy number variation from sequencing of multiple samples. Sci Rep. 2018;8:4009.

    PubMed 

    Google Scholar
     

  • Vialette-Guiraud ACM, Adam H, Finet C, Jasinski S, Jouannic S, Scutt CP. Insights from ANA-grade angiosperms into the early evolution of CUP-SHAPED COTYLEDON genes. Ann Bot. 2011;107:1511–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K. The flowering world: a tale of duplications. Trends Plant Sci. 2009;14:680–8.

    PubMed 

    Google Scholar
     

  • Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JSP. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot. 2017;120:183–94.

    PubMed 

    Google Scholar
     

  • Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, et al. Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato. Cell. 2020;182:145-61.e23.

    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoud M, Gobet N, Cruz-Dávalos DI, et al. Structural variant calling: the long and the short of it. Genome Biol. 2019;20:246.

    PubMed 

    Google Scholar
     

  • Gabur I, Chawla HS, Snowdon RJ, et al. Connecting genome structural variation with complex traits in crop plants. Theor Appl Genet. 2019;132:733–50.

    PubMed 

    Google Scholar
     

  • Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, Sampas N, Bruhn L, Shendure J. 1000 Genomes Project, Eichler EE Diversity of human copy number variation and multicopy genes. Science. 2010;330:641–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus × domestica Borkh). Nat Genet. 2010;42:833–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Zahn LM, Leebens-Mack J, dePamphilis CW, Ma H, Theissen G, et al. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics. 2005;169:2209–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, et al. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A. 2005;102:5454–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Veron AS, Kaufmann K, Bornberg-Bauer E. Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins. Mol Biol Evol. 2007;24:670–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Mostert-O’Neill MM, Tate H, Reynolds SM, Mphahlele MM, van den Berg G, Verryn SD, Acosta JJ, Borevitz JO, Myburg AA. Genomic consequences of artificial selection during early domestication of a wood fibre crop. New Phytol. 2022;235:1944–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Huang S, Han B, Li J. The integrated genomics of crop domestication and breeding. Cell. 2022;185:2828–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Carpenter D, Mitchell LM, Armour JAL. Copy number variation of human AMY1 is a minor contributor to variation in salivary amylase expression and activity. Hum Genomics. 2017;11:2.

    PubMed 

    Google Scholar
     

  • Rinker DC, Specian NK, Zhao S, Gibbons JG. Polar bear evolution is marked by rapid changes in gene copy number in response to dietary shift. Proc Natl Acad Sci U S A. 2019;116:13446–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Rossi N, Aliyev E, Visconti A, et al. Ethnic-specific association of amylase gene copy number with adiposity traits in a large Middle Eastern biobank. Genom Med. 2021;6:8.


    Google Scholar
     

  • Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, Song J, Schnabel RD, Ventura M, Taylor JF, Garcia JF, Van Tassell CP, Sonstegard TS, Eichler EE, Liu GE. Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res. 2012;22(4):778–90. https://doi.org/10.1101/gr.133967.111.

    CAS 
    PubMed 

    Google Scholar
     

  • Strillacci MG, Gorla E, Ríos-Utrera A, Vega-Murillo VE, Montaño-Bermudez M, Garcia-Ruiz A, Cerolini S, Román-Ponce SI, Bagnato A. Copy Number Variation Mapping and Genomic Variation of Autochthonous and Commercial Turkey Populations. Front Genet. 2019;10:982.

    PubMed 

    Google Scholar
     

  • Prado-Martinez J, Sudmant P, Kidd J, et al. Great ape genetic diversity and population history. Nature. 2013;499(7459):471–5. https://doi.org/10.1038/nature12228.

    CAS 
    PubMed 

    Google Scholar
     

  • Gaines TA, Zhang W, Wang D, Bukun B, Chisholm ST, Shaner DL, Nissen SJ, et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci USA. 2010;107:1029–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Suryawanshi V, Talke IN, Weber M, et al. Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri. BMC Genomics. 2016;17(Suppl 13):1034.

    PubMed 

    Google Scholar
     

  • Cornille A, Gladieux P, Smulders MJM, Rolden-Ruiz I, Laurens F, Cam BL, et al. New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet. 2012;8:e1002703.

    CAS 
    PubMed 

    Google Scholar
     

  • Coart E, Glabeke SV, Loose MD, Larsen AS, Roldan-Ruiz I. Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L) Mill) and the domesticated apple (Malus domestica Borkh). Mol Ecol. 2006;15:2171–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, et al. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun. 2017;8:249.

    PubMed 

    Google Scholar
     

  • Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, Duan N, et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet. 2020;52:1423–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Khan MA, Korban SS. Association mapping in forest trees and fruit crops. J Exp Bot. 2012;63:4045–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Cardone MF, D’Addabbo P, Alkan C, Bergamini C, Catacchio CR, Anaclerio F, et al. Inter-varietal structural variation in grapevine genomes. Plant J. 2016;88:648–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Boocock J, Chagné D, Merriman TR, et al. The distribution and impact of common copy-number variation in the genome of the domesticated apple. Malus x domestica Borkh BMC Genomics. 2015;16:848.

    PubMed 

    Google Scholar
     

  • Xu J, Zhang W, Zhang P, et al. A comprehensive analysis of copy number variations in diverse apple populations. BMC Genomics. 2023;24:256.

    CAS 
    PubMed 

    Google Scholar
     

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet. 2017;49:1099–106.

    CAS 
    PubMed 

    Google Scholar
     

  • Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013–2015. Available from: http://www.repeatmasker.org

  • Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Hach F, Hormozdiari F, Alkan C, et al. mrsFAST: a cache-oblivious algorithm for short-read mapping. Nat Methods. 2010;7:576–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, et al. Personalized copy number and segmental duplication maps using next-generation sequencing. Nat Genet. 2009;41:1061–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an Information Aesthetic for Comparative Genomics. Genome Res. 2009;19:1639–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 2001;11:1005–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for Computing and Annotating Genomic Ranges. PLoS Comput Biol. 2013;9:e1003118.

    CAS 
    PubMed 

    Google Scholar
     

  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.


    Google Scholar
     

  • Garnier S. viridis: Default Color Maps from ‘matplotlib’. R package version 0.5.1. 2018. Available from: https://CRAN.R-project.org/package=viridis

  • Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009;25:1841–2.

    CAS 
    PubMed 

    Google Scholar
     

  • Paradis E, Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using Multilocus Genotype Data. Genetics. 2000;155:945–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Falush D, Stephens M, Pritchard JK. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics. 2003;164:1567–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–6. https://doi.org/10.1093/bioinformatics/btm233.

    CAS 
    PubMed 

    Google Scholar
     

  • Rosenberg NA. distruct: a program for the graphical display of population structure. Mol Ecol Notes. 2004;4:137–8.


    Google Scholar
     

  • Tian T, Liu Y, Yan H, et al. agriGO v20: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45:W122–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Chiang D, McCarroll S. Mapping duplicated sequences. Nat Biotechnol. 2009;27:1001–2. https://doi.org/10.1038/nbt1109-1001.

    CAS 
    PubMed 

    Google Scholar
     

  • Jain C, Rhie A, Hansen NF, et al. Long-read mapping to repetitive reference sequences using Winnowmap2. Nat Methods. 2022;19:705–10. https://doi.org/10.1038/s41592-022-01457-8.

    CAS 
    PubMed 

    Google Scholar
     

  • Pajuste FD, Remm M. GeneToCN: An alignment-free method for gene copy number estimation directly from next-generation sequencing reads. Sci Rep. 2023;13(1):17765. https://doi.org/10.1038/s41598-023-44636-z.

    CAS 
    PubMed 

    Google Scholar
     

  • Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21(6):974–84. https://doi.org/10.1101/gr.114876.110.

    CAS 
    PubMed 

    Google Scholar
     

  • Green RE, Krause J, Briggs AW, et al. A draft sequence of the Neandertal genome. Science. 2010;328(5979):710–22. https://doi.org/10.1126/science.1188021.

    CAS 
    PubMed 

    Google Scholar
     

  • Anderson JE, Kantar MB, Kono TY, Fu F, Stec AO, Song Q, et al. A Roadmap for Functional Structural Variants in the Soybean Genome. G3 (Bethesda). 2014;4:1307–18.

    PubMed 

    Google Scholar
     

  • Dolatabadian A, Patel DA, Edwards D, Batley J. Copy number variation and disease resistance in plants. Theor Appl Genet. 2017;130:2479–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Schiessl S, Huettel B, Kuehn D, Reinhardt R, Snowdon R. Post-polyploidisation morphotype diversification associates with gene copy number variation. Sci Rep. 2017;7:41845.

    CAS 
    PubMed 

    Google Scholar
     

  • Emanuel BS, Shaikh TH. Segmental duplications: An ‘expanding’ role in genomic instability and disease. Nat Rev Genet. 2001;2:791–800.

    CAS 
    PubMed 

    Google Scholar
     

  • Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet. 2005;77:78–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Goidts V, Cooper DN, Armengol L, Schempp W, Conroy J, Estivill X, et al. Complex patterns of copy number variation at sites of segmental duplications: An important category of structural variation in the human genome. Hum Genet. 2006;120:270–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Marques-Bonet T, Girirajan S, Eichler EE. The origins and impact of primate segmental duplications. Trends Genet. 2009;25:443–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Hughes AL. The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B Biol Sci. 1994;256:119–24.

    CAS 

    Google Scholar
     

  • Meng D, Cao Y, Chen T, et al. Evolution and functional divergence of MADS-box genes in Pyrus. Sci Rep. 2019;9:1266.

    PubMed 

    Google Scholar
     

  • Leseberg CH, Li A, Kang H, Duvall M, Mao L. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene. 2006;378:84–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Shan H, Zahn L, Guindon S, Wall PK, Kong H, Ma H, et al. Evolution of plant MADS box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Mol Biol Evol. 2009;26:2229–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Tian Y, Dong Q, Ji Z, Chi F, Cong P, Zhou Z. Genome-wide identification and analysis of the MADS-box gene family in apple. Gene. 2015;555:277–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Colaric M, Veberic R, Stampar F, Hudina M. Evaluation of peach and nectarine fruit quality and correlations between sensory and chemical attributes. J Sci Food Agric. 2005;85:2611–6.

    CAS 

    Google Scholar
     

  • Yamaki S. Isolation of vacuoles from immature apple fruit flesh and compartmentation of sugars, organic acids, phenolic compounds and amino acids. Plant Cell Physiol. 1984;25:151–66.

    CAS 

    Google Scholar
     

  • Li M, Li P, Ma F, et al. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Hortic Res. 2018;5:60.

    PubMed 

    Google Scholar
     

  • Beruter J. Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. J Plant Physiol. 2004;161:1011–29.

    PubMed 

    Google Scholar
     

  • Wang JH, Gu KD, Zhang QY, Yu JQ, Wang CK, You CX, Cheng L, Hu DG. Ethylene inhibits malate accumulation in apple by transcriptional repression of aluminum-activated malate transporter 9 via the WRKY31-ERF72 network. New Phytol. 2023;239:1014–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu L, Hou Y, Bickhart D, et al. Population-genetic properties of differentiated copy number variations in cattle. Sci Rep. 2016;6:23161.

    CAS 
    PubMed 

    Google Scholar
     

  • Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, Sampas N, Bruhn L, Shendure J, Eichler EE, et al. Global diversity, population stratification, and selection of human copy number variation. Science. 2015;349:aab3761.

    PubMed 

    Google Scholar
     

  • Volk GM, Peace CP, Henk AD, Howard NP. DNA profiling with the 20K apple SNP array reveals Malus domestica hybridization and admixture in M sieversii, M orientalis, and M sylvestris genebank accessions. Front Plant Sci. 2022;13:1015658.

    PubMed 

    Google Scholar
     

  • Zhang Y, Hu Y, Wang X, Jiang Q, Zhao H, Wang J, Ju Z, Yang L, Gao Y, Wei X, Bai J, Zhou Y, Huang J. Population Structure and Selection Signatures Underlying High-Altitude Adaptation Inferred From Genome-Wide Copy Number Variations in Chinese Indigenous Cattle. Front Genet. 2020;10:1404.

    PubMed 

    Google Scholar
     

  • Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res. 2010;20:1689–99.

    CAS 
    PubMed 

    Google Scholar
     

  • Kuo WH, Wright SJ, Small LL, et al. De novo genome assembly of white clover (Trifolium repens L) reveals the role of copy number variation in rapid environmental adaptation. BMC Biol. 2024;22:165.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang H, Liu J, Dang M, Zhang B, Li H, Meng R, Qu D, Yang Y, Zhao Z. Analysis of β-Galactosidase During Fruit Development and Ripening in Two Different Texture Types of Apple Cultivars. Front Plant Sci. 2018;9:539.

    PubMed 

    Google Scholar
     

  • Vogt J, Schiller D, Ulrich D, et al. Identification of lipoxygenase (LOX) genes putatively involved in fruit flavour formation in apple (Malus × domestica). Tree Genet Genomes. 2013;9:1493–511.


    Google Scholar
     

  • Zhang L, Ma B, Wang C, Chen X, Ruan YL, Yuan Y, Ma F, Li M. MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5). Plant Physiol. 2022;188:2059–72.

    CAS 
    PubMed 

    Google Scholar
     

  • van Ooijen G, Mayr G, Kasiem MM, Albrecht M, Cornelissen BJ, Takken FL. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot. 2008;59(6):1383–97. https://doi.org/10.1093/jxb/ern045.

    CAS 
    PubMed 

    Google Scholar
     

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M. Plant responses to stresses: Role of ascorbate peroxidase in antioxidant protection. Genet Mol Biol. 2012;35(4 Suppl):1011–9. https://doi.org/10.1590/s1415-47572012000600016.

    CAS 
    PubMed 

    Google Scholar
     

  • Samuolienė G, Viškelienė A, Sirtautas R, Kviklys D. Relationships between apple tree rootstock, crop-load, plant nutritional status, and yield. Sci Hortic. 2016;211:167–73. https://doi.org/10.1016/j.scienta.2016.08.027.

    CAS 

    Google Scholar
     

  • Foster TM, McAtee PA, Waite CN, Boldingh HL, McGhie TK. Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. Horticultural Research. 2017;4:17009. https://doi.org/10.1038/hortres.2017.9.

    CAS 

    Google Scholar
     

  • Lee MH, Jeon HS, Kim SH, Chung JH, Roppolo D, et al. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J. 2019;38:e101948.

    CAS 
    PubMed 

    Google Scholar
     

  • Bhuiyan NH, Selvaraj G, Wei Y, King J. Role of lignification in plant defense. Plant Signal Behav. 2009;4:158–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu L, Zhu L, Tu L, Liu L, Yuan D, et al. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot. 2011;62:5607–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Vance CP, Kirk TK, Sherwood RT. Lignification as a mechanism of disease resistance. Annu Rev Phytopathol. 1980;18:259–88.

    CAS 

    Google Scholar
     

  • Zhu Y, Li G, Singh J, Khan A, Fazio G, Saltzgiver M, Xia R. Laccase Directed Lignification Is One of the Major Processes Associated With the Defense Response Against Pythium ultimum Infection in Apple Roots. Front Plant Sci. 2021;12:629776.

    PubMed 

    Google Scholar
     

  • Wang Y, Li W, Xu X, Qiu C, Wu T, Wei Q, Ma F, Han Z. Progress of Apple Rootstock Breeding and Its Use. Hortic Plant J. 2019;5:183–91.


    Google Scholar