Yairi, E. & Ambrose, N. Epidemiology of stuttering: 21st century advances. J. Fluen. Disord. 38, 66–87 (2013).
Chang, S. E. et al. Stuttering: our current knowledge, research opportunities, and ways to address critical gaps. Neurobiol. Lang. (Camb.) 6, nol_a_00162 (2025).
Andrews, G. & Harris, M. The Syndrome of Stuttering. Clinics in Developmental Medicine No. 17 (William Heinemann Medical Books, 1964).
Månsson, H. Childhood stuttering. J. Fluen. Disord. 25, 47–57 (2000).
Yairi, E. & Ambrose, N. A longitudinal study of stuttering in children: a preliminary report. J. Speech Hear. Res. 35, 755–760 (1992).
Baxter, S. et al. The state of the art in non‐pharmacological interventions for developmental stuttering. Part 1: a systematic review of effectiveness. Int. J. Lang. Commun. Disord. 50, 676–718 (2015).
Daniels, D. E. & Gabel, R. M. The impact of stuttering on identity construction. Top. Lang. Disord. 24, 200–215 (2004).
Daniels, D. E., Gabel, R. M. & Hughes, S. Recounting the K–12 school experiences of adults who stutter: a qualitative analysis. J. Fluen. Disord. 37, 71–82 (2012).
McAllister, J., Collier, J. & Shepstone, L. The impact of adolescent stuttering on educational and employment outcomes: evidence from a birth cohort study. J. Fluen. Disord. 37, 106–121 (2012).
Klein, J. F. & Hood, S. B. The impact of stuttering on employment opportunities and job performance. J. Fluen. Disord. 29, 255–273 (2004).
Craig, A., Blumgart, E. & Tran, Y. The impact of stuttering on the quality of life in adults who stutter. J. Fluen. Disord. 34, 61–71 (2009).
Craig, A., Hancock, K., Tran, Y., Craig, M. & Peters, K. Epidemiology of stuttering in the community across the entire life span. J. Speech Lang. Hear. Res. 45, 1097–1105 (2002).
Singer, C. M., Hessling, A., Kelly, E. M., Singer, L. & Jones, R. M. Clinical characteristics associated with stuttering persistence: a meta-analysis. J. Speech Lang. Hear. Res. 63, 2995–3018 (2020).
Singer, C. M., Otieno, S., Chang, S.-E. & Jones, R. M. Predicting persistent developmental stuttering using a cumulative risk approach. J. Speech Lang. Hear. Res. 65, 70–95 (2022).
Shugart, Y. Y. et al. Results of a genome-wide linkage scan for stuttering. Am. J. Med. Genet. 124A, 133–135 (2004).
Riaz, N. et al. Genomewide significant linkage to stuttering on chromosome 12. Am. J. Hum. Genet. 76, 647–651 (2005).
Suresh, R. et al. New complexities in the genetics of stuttering: significant sex-specific linkage signals. Am. J. Hum. Genet. 78, 554–563 (2006).
Wittke-Thompson, J. K. et al. Genetic studies of stuttering in a founder population. J. Fluen. Disord. 32, 33–50 (2007).
Kang, C. et al. Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. N. Engl. J. Med. 362, 677–685 (2010).
Lan, J. et al. Association between dopaminergic genes (SLC6A3 and DRD2) and stuttering among Han Chinese. J. Hum. Genet. 54, 457–460 (2009).
Domingues, C. E. F. et al. A genetic linkage study in Brazil identifies a new locus for persistent developmental stuttering on chromosome 10. Genet. Mol. Res. 13, 2094–2101 (2014).
Mohammadi, H. et al. Sex steroid hormones and sex hormone binding globulin levels, CYP17 MSP AI (−34 T:C) and CYP19 codon 39 (Trp:Arg) variants in children with developmental stuttering. Brain Lang. 175, 47–56 (2017).
Raza, M. H., Amjad, R., Riazuddin, S. & Drayna, D. Studies in a consanguineous family reveal a novel locus for stuttering on chromosome 16q. Hum. Genet. 131, 311–313 (2012).
Raza, M. H. et al. Association between rare variants in AP4E1, a component of intracellular trafficking, and persistent stuttering. Am. J. Hum. Genet. 97, 715–725 (2015).
van Beijsterveldt, C. E. M., Felsenfeld, S. & Boomsma, D. I. Bivariate genetic analyses of stuttering and nonfluency in a large sample of 5-year-old twins. J. Speech Lang. Hear. Res. 53, 609–619 (2010).
Fagnani, C., Fibiger, S., Skytthe, A. & Hjelmborg, J. V. B. Heritability and environmental effects for self-reported periods with stuttering: a twin study from Denmark. Logoped. Phoniatr. Vocol. 36, 114–120 (2011).
Kazemi, N., Estiar, M. A., Fazilaty, H. & Sakhinia, E. Variants in GNPTAB, GNPTG and NAGPA genes are associated with stutterers. Gene 647, 93–100 (2018).
Kang, C. et al. Evaluation of the association between polymorphisms at the DRD2 locus and stuttering. J. Hum. Genet. 56, 472–473 (2011).
Frigerio Domingues, C. E. et al. Are variants in sex hormone metabolizing genes associated with stuttering? Brain Lang. 191, 28–30 (2019).
Polikowsky, H. G. et al. Population-based genetic effects for developmental stuttering. HGG Adv. 3, 100073 (2022).
Shaw, D. M. et al. Phenome risk classification enables phenotypic imputation and gene discovery in developmental stuttering. Am. J. Hum. Genet. 108, 2271–2283 (2021).
Harris, K. M. et al. Cohort profile: the National Longitudinal Study of Adolescent to Adult Health (Add Health). Int. J. Epidemiol. 48, 1415–1415k (2019).
Durand, E. Y., Do, C. B., Mountain, J. L. & Macpherson, J. M. Ancestry composition: a novel, efficient pipeline for ancestry deconvolution. Preprint at https://doi.org/10.1101/010512 (2014).
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).
Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. Nat. Genet. 53, 663–671 (2021).
The Neale Lab. Insights from estimates of SNP-heritability for >2,000 traits and disorders in UK Biobank. http://www.nealelab.is/blog/2017/9/20/insights-from-estimates-of-snp-heritability-for-2000-traits-and-disorders-in-uk-biobank (2017).
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
Lu, C. et al. The neural substrates for atypical planning and execution of word production in stuttering. Exp. Neurol. 221, 146–156 (2010).
Chang, S.-E., Garnett, E. O., Etchell, A. & Chow, H. M. Functional and neuroanatomical bases of developmental stuttering: current insights. Neuroscientist 25, 566–582 (2019).
Etchell, A. C., Civier, O., Ballard, K. J. & Sowman, P. F. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016. J. Fluen. Disord. 55, 6–45 (2018).
Liu, J. et al. A functional imaging study of self-regulatory capacities in persons who stutter. PLoS ONE 9, e89891 (2014).
Neef, N. E. et al. Altered morphology of the nucleus accumbens in persistent developmental stuttering. J. Fluen. Disord. 55, 84–93 (2018).
Toyomura, A., Fujii, T. & Kuriki, S. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers. NeuroImage 109, 458–468 (2015).
Chang, S. E. & Zhu, D. C. Neural network connectivity differences in children who stutter. Brain 136, 3709–3726 (2013).
Chang, S.-E., Horwitz, B., Ostuni, J., Reynolds, R. & Ludlow, C. L. Evidence of left inferior frontal–premotor structural and functional connectivity deficits in adults who stutter. Cereb. Cortex 21, 2507–2518 (2011).
Choo, A. L., Smith, S. A. & Li, H. Associations between stuttering, comorbid conditions and executive function in children: a population-based study. BMC Psychol. 8, 113 (2020).
Wieland, E. A., McAuley, J. D., Dilley, L. C. & Chang, S.-E. Evidence for a rhythm perception deficit in children who stutter. Brain Lang. 144, 26–34 (2015).
Garnett, E. O. et al. Auditory rhythm discrimination in adults who stutter: an fMRI study. Brain Lang. 236, 105219 (2023).
Ladányi, E., Persici, V., Fiveash, A., Tillmann, B. & Gordon, R. L. Is atypical rhythm a risk factor for developmental speech and language disorders? Wiley Interdiscip. Rev. Cogn. Sci. 11, e1528 (2020).
Pruett, D. G. et al. Identifying developmental stuttering and associated comorbidities in electronic health records and creating a phenome risk classifier. J. Fluen. Disord. 68, 105847 (2021).
Arenas, R. M., Walker, E. A. & Oleson, J. J. Developmental stuttering in children who are hard of hearing. Lang. Speech Hear. Serv. Sch. 48, 234–248 (2017).
Strom, M. A. & Silverberg, J. I. Eczema is associated with childhood speech disorder: a retrospective analysis from the National Survey of Children’s Health and the National Health Interview Survey. J. Pediatrics 168, 185–192.e4 (2016).
Ajdacic-Gross, V. et al. Subtypes of stuttering determined by latent class analysis in two Swiss epidemiological surveys. PLoS ONE 13, e0198450 (2018).
Briley, P. M. & Merlo, S. Presence of allergies and their impact on sleep in children who stutter. Perspect. ASHA Spec. Interest Groups 5, 1454–1466 (2020).
Jacobs, M. M., Merlo, S. & Briley, P. M. Sleep duration, insomnia, and stuttering: the relationship in adolescents and young adults. J. Commun. Disord. 91, 106106 (2021).
Merlo, S. & Briley, P. M. Sleep problems in children who stutter: evidence from population data. J. Commun. Disord. 82, 105935 (2019).
Mohammadi, H. et al. Sleep problems, social anxiety and stuttering severity in adults who do and adults who do not stutter. J. Clin. Med. 12, 161 (2023).
Briley, P. M., Merlo, S. & Ellis, C. Sex differences in childhood stuttering and coexisting developmental disorders. J. Dev. Phys. Disabil. 34, 505–527 (2022).
Lebrun, Y. Stuttering and epilepsy. J. Neurolinguist. 6, 433–444 (1991).
Tomisato, S., Oishi, N., Asano, K., Watanabe, Y. & Ogawa, K. Developmental disability and psychiatric conditions in 39 patients with stuttering. Jpn. J. Logoped. Phoniatr. 57, 7–11 (2016).
Tichenor, S. E., Palasik, S. & Yaruss, J. S. Understanding the broader impact of stuttering: suicidal ideation. Am. J. Speech Lang. Pathol. 32, 2087–2110 (2023).
Briley, P. M., Gerlach, H. & Jacobs, M. M. Relationships between stuttering, depression, and suicidal ideation in young adults: accounting for gender differences. J. Fluen. Disord. 67, 105820 (2021).
Bernard, R., Hofslundsengen, H. & Frazier Norbury, C. Anxiety and depression symptoms in children and adolescents who stutter: a systematic review and meta-analysis. J. Speech Lang. Hear. Res. 65, 624–644 (2022).
Iverach, L. & Rapee, R. M. Social anxiety disorder and stuttering: current status and future directions. J. Fluen. Disord. 40, 69–82 (2014).
Tichenor, S. E. & Yaruss, J. S. Stuttering as defined by adults who stutter. J. Speech Lang. Hear. Res. 62, 4356–4369 (2019).
Tichenor, S. E., Johnson, C. A. & Yaruss, J. S. A preliminary investigation of attention-deficit/hyperactivity disorder characteristics in adults who stutter. J. Speech Lang. Hear. Res. 64, 839–853 (2021).
Alm, P. A. Stuttering in relation to anxiety, temperament, and personality: review and analysis with focus on causality. J. Fluen. Disord. 40, 5–21 (2014).
Pirinen, V. et al. A comprehensive analysis of speech disfluencies in autistic young adults and control young adults: group differences in typical, stuttering-like, and atypical disfluencies. J. Speech Lang. Hear. Res. 66, 832–848 (2023).
Plexico, L. W., Cleary, J. E., McAlpine, A. & Plumb, A. M. Disfluency characteristics observed in young children with autism spectrum disorders: a preliminary report. Perspect. Fluen. Fluen. Disord. 20, 42–50 (2010).
Scaler Scott, K., Tetnowski, J. A., Flaitz, J. R. & Yaruss, J. S. Preliminary study of disfluency in school‐aged children with autism. Int. J. Lang. Commun. Disord. 49, 75–89 (2014).
Tetnowski, J. A. & Donaher, J. Stuttering and autism spectrum disorders: assessment and treatment. Semin. Speech Lang. 43, 117–129 (2022).
Iverach, L. et al. Mood and substance use disorders among adults seeking speech treatment for stuttering. J. Speech Lang. Hear. Res. 53, 1178–1190 (2010).
Heelan, M., McAllister, J. & Skinner, J. Stuttering, alcohol consumption and smoking. J. Fluen. Disord. 48, 27–34 (2016).
Ye, T., Shao, J. & Kang, H. Debiased inverse-variance weighted estimator in two-sample summary-data Mendelian randomization. Ann. Stat. 49, 2079–2100 (2021).
Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Prim. 2, 6 (2022).
Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).
Hautakangas, H. et al. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat. Genet. 54, 152–160 (2022).
Jansen, P. R. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 51, 394–403 (2019).
Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 9, 2941 (2018).
Niarchou, M. et al. Genome-wide association study of musical beat synchronization demonstrates high polygenicity. Nat. Hum. Behav. 6, 1292–1309 (2022).
Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).
Ghoussaini, M. et al. Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 49, D1311–D1320 (2021).
Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).
Wingate, M. E. & Howell, P. Foundations of stuttering. J. Acoust. Soc. Am. 112, 1229–1231 (2002).
Brady, J. P. Metronome-conditioned speech retraining for stuttering. Behav. Ther. 2, 129–150 (1971).
Brady, J. P. Studies on the metronome effect on stuttering. Behav. Res. Ther. 7, 197–204 (1969).
Hosseini, R., Walsh, B., Tian, F. & Wang, S. An fNIRS-based feature learning and classification framework to distinguish hemodynamic patterns in children who stutter. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1254–1263 (2018).
Hartwigsen, G., Neef, N. E., Camilleri, J. A., Margulies, D. S. & Eickhoff, S. B. Functional segregation of the right inferior frontal gyrus: evidence from coactivation-based parcellation. Cereb. Cortex 29, 1532–1546 (2019).
Chesters, J., Möttönen, R. & Watkins, K.E. Neural changes after training with transcranial direct current stimulation to increase speech fluency in adults who stutter. Preprint at https://doi.org/10.31219/osf.io/8st3j (2021).
Loucks, T., Kraft, S. J., Choo, A. L., Sharma, H. & Ambrose, N. G. Functional brain activation differences in stuttering identified with a rapid fMRI sequence. J. Fluen. Disord. 36, 302–307 (2011).
Chow, H. M. et al. Linking lysosomal enzyme targeting genes and energy metabolism with altered gray matter volume in children with persistent stuttering. Neurobiol. Lang. 1, 365–380 (2020).
Austin-Zimmerman, I. et al. Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration. Nat. Commun. 14, 6059 (2023).
Schoeler, T. et al. Participation bias in the UK Biobank distorts genetic associations and downstream analyses. Nat. Hum. Behav. 7, 1216–1227 (2023).
Kim, K. S., Daliri, A., Flanagan, J. R. & Max, L. Dissociated development of speech and limb sensorimotor learning in stuttering: Speech auditory-motor learning is impaired in both children and adults who stutter. Neuroscience 451, 1–21 (2020).
Ardila, A. et al. An epidemiologic study of stuttering. J. Commun. Disord. 27, 37–48 (1994).
Corcoran, J. A. & Stewart, M. Stories of stuttering. J. Fluen. Disord. 23, 247–264 (1998).
Boyle, M. P. Enacted stigma and felt stigma experienced by adults who stutter. J. Commun. Disord. 73, 50–61 (2018).
Cox, N. J. & Kidd, K. K. Can recovery from stuttering be considered a genetically milder subtype of stuttering? Behav. Genet. 13, 129–139 (1983).
Seider, R. A., Kidd, K. K. & Gladstien, K. L. Recovery and persistence of stuttering among relatives of stutterers. J. Speech Hear. Disord. 48, 402–409 (1983).
Ambrose, N. G., Yairi, E., Loucks, T. M., Seery, C. H. & Throneburg, R. Relation of motor, linguistic and temperament factors in epidemiologic subtypes of persistent and recovered stuttering: initial findings. J. Fluen. Disord. 45, 12–26 (2015).
Yairi, E., Ambrose, N. & Cox, N. Genetics of stuttering: a critical review. J. Speech Lang. Hear. Res. 39, 771–784 (1996).
Yairi, E. Subtyping stuttering I: a review. J. Fluen. Disord. 32, 165–196 (2007).
Bloodstein, O. & Ratner, N. B. A Handbook on Stuttering 6th edn (Delmar Cengage Learning, 2008).
Theys, C., Van Wieringen, A., Sunaert, S., Thijs, V. & De Nil, L. F. A one year prospective study of neurogenic stuttering following stroke: incidence and co-occurring disorders. J. Commun. Disord. 44, 678–687 (2011).
Wells, H. R. R. et al. GWAS identifies 44 independent associated genomic loci for self-reported adult hearing difficulty in UK Biobank. Am. J. Hum. Genet. 105, 788–802 (2019).
Skelton, M. et al. Self‐reported medication use as an alternate phenotyping method for anxiety and depression in the UK Biobank. Am. J. Med. Genet. B Neuropsychiatr. Genet. 186, 389–398 (2021).
Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 48, 1031–1036 (2016).
Purves, K. L. et al. A major role for common genetic variation in anxiety disorders. Mol. Psychiatry 25, 3292–3303 (2020).
Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).
Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).
Clogg, C. C., Petkova, E. & Haritou, A. Statistical methods for comparing regression coefficients between models. Am. J. Sociol. 100, 1261–1293 (1995).
Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).
GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).
Martin, J. et al. A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder. Biol. Psychiatry 83, 1044–1053 (2018).
Buniello, A. et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
Gerring, Z. F., Gamazon, E. R. & Derks, E. M. A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression. PLoS Genet. 15, e1008245 (2019).
Pividori, M. et al. PhenomeXcan: mapping the genome to the phenome through the transcriptome. Sci. Adv. 6, eaba2083 (2020).
Wen, X., Pique-Regi, R. & Luca, F. Integrating molecular QTL data into genome-wide genetic association analysis: probabilistic assessment of enrichment and colocalization. PLoS Genet. 13, e1006646 (2017).
Berisa, T. & Pickrell, J. K. Approximately independent linkage disequilibrium blocks in human populations. Bioinformatics 32, 283–285 (2015).
Hukku, A., Sampson, M. G., Luca, F., Pique-Regi, R. & Wen, X. Analyzing and reconciling colocalization and transcriptome-wide association studies from the perspective of inferential reproducibility. Am. J. Hum. Genet. 109, 825–837 (2022).
Scartozzi, A. Concordance-analysis, version 1.0. Zenodo https://doi.org/10.5281/zenodo.14884575 (2025).