• Yairi, E. & Ambrose, N. Epidemiology of stuttering: 21st century advances. J. Fluen. Disord. 38, 66–87 (2013).


    Google Scholar
     

  • Chang, S. E. et al. Stuttering: our current knowledge, research opportunities, and ways to address critical gaps. Neurobiol. Lang. (Camb.) 6, nol_a_00162 (2025).

    PubMed 

    Google Scholar
     

  • Andrews, G. & Harris, M. The Syndrome of Stuttering. Clinics in Developmental Medicine No. 17 (William Heinemann Medical Books, 1964).

  • Månsson, H. Childhood stuttering. J. Fluen. Disord. 25, 47–57 (2000).


    Google Scholar
     

  • Yairi, E. & Ambrose, N. A longitudinal study of stuttering in children: a preliminary report. J. Speech Hear. Res. 35, 755–760 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Baxter, S. et al. The state of the art in non‐pharmacological interventions for developmental stuttering. Part 1: a systematic review of effectiveness. Int. J. Lang. Commun. Disord. 50, 676–718 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daniels, D. E. & Gabel, R. M. The impact of stuttering on identity construction. Top. Lang. Disord. 24, 200–215 (2004).


    Google Scholar
     

  • Daniels, D. E., Gabel, R. M. & Hughes, S. Recounting the K–12 school experiences of adults who stutter: a qualitative analysis. J. Fluen. Disord. 37, 71–82 (2012).


    Google Scholar
     

  • McAllister, J., Collier, J. & Shepstone, L. The impact of adolescent stuttering on educational and employment outcomes: evidence from a birth cohort study. J. Fluen. Disord. 37, 106–121 (2012).


    Google Scholar
     

  • Klein, J. F. & Hood, S. B. The impact of stuttering on employment opportunities and job performance. J. Fluen. Disord. 29, 255–273 (2004).


    Google Scholar
     

  • Craig, A., Blumgart, E. & Tran, Y. The impact of stuttering on the quality of life in adults who stutter. J. Fluen. Disord. 34, 61–71 (2009).


    Google Scholar
     

  • Craig, A., Hancock, K., Tran, Y., Craig, M. & Peters, K. Epidemiology of stuttering in the community across the entire life span. J. Speech Lang. Hear. Res. 45, 1097–1105 (2002).

    PubMed 

    Google Scholar
     

  • Singer, C. M., Hessling, A., Kelly, E. M., Singer, L. & Jones, R. M. Clinical characteristics associated with stuttering persistence: a meta-analysis. J. Speech Lang. Hear. Res. 63, 2995–3018 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singer, C. M., Otieno, S., Chang, S.-E. & Jones, R. M. Predicting persistent developmental stuttering using a cumulative risk approach. J. Speech Lang. Hear. Res. 65, 70–95 (2022).

    PubMed 

    Google Scholar
     

  • Shugart, Y. Y. et al. Results of a genome-wide linkage scan for stuttering. Am. J. Med. Genet. 124A, 133–135 (2004).

    PubMed 

    Google Scholar
     

  • Riaz, N. et al. Genomewide significant linkage to stuttering on chromosome 12. Am. J. Hum. Genet. 76, 647–651 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suresh, R. et al. New complexities in the genetics of stuttering: significant sex-specific linkage signals. Am. J. Hum. Genet. 78, 554–563 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wittke-Thompson, J. K. et al. Genetic studies of stuttering in a founder population. J. Fluen. Disord. 32, 33–50 (2007).


    Google Scholar
     

  • Kang, C. et al. Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. N. Engl. J. Med. 362, 677–685 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan, J. et al. Association between dopaminergic genes (SLC6A3 and DRD2) and stuttering among Han Chinese. J. Hum. Genet. 54, 457–460 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Domingues, C. E. F. et al. A genetic linkage study in Brazil identifies a new locus for persistent developmental stuttering on chromosome 10. Genet. Mol. Res. 13, 2094–2101 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Mohammadi, H. et al. Sex steroid hormones and sex hormone binding globulin levels, CYP17 MSP AI (−34 T:C) and CYP19 codon 39 (Trp:Arg) variants in children with developmental stuttering. Brain Lang. 175, 47–56 (2017).

    PubMed 

    Google Scholar
     

  • Raza, M. H., Amjad, R., Riazuddin, S. & Drayna, D. Studies in a consanguineous family reveal a novel locus for stuttering on chromosome 16q. Hum. Genet. 131, 311–313 (2012).

    PubMed 

    Google Scholar
     

  • Raza, M. H. et al. Association between rare variants in AP4E1, a component of intracellular trafficking, and persistent stuttering. Am. J. Hum. Genet. 97, 715–725 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Beijsterveldt, C. E. M., Felsenfeld, S. & Boomsma, D. I. Bivariate genetic analyses of stuttering and nonfluency in a large sample of 5-year-old twins. J. Speech Lang. Hear. Res. 53, 609–619 (2010).

    PubMed 

    Google Scholar
     

  • Fagnani, C., Fibiger, S., Skytthe, A. & Hjelmborg, J. V. B. Heritability and environmental effects for self-reported periods with stuttering: a twin study from Denmark. Logoped. Phoniatr. Vocol. 36, 114–120 (2011).

    PubMed 

    Google Scholar
     

  • Kazemi, N., Estiar, M. A., Fazilaty, H. & Sakhinia, E. Variants in GNPTAB, GNPTG and NAGPA genes are associated with stutterers. Gene 647, 93–100 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Kang, C. et al. Evaluation of the association between polymorphisms at the DRD2 locus and stuttering. J. Hum. Genet. 56, 472–473 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frigerio Domingues, C. E. et al. Are variants in sex hormone metabolizing genes associated with stuttering? Brain Lang. 191, 28–30 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polikowsky, H. G. et al. Population-based genetic effects for developmental stuttering. HGG Adv. 3, 100073 (2022).

    PubMed 

    Google Scholar
     

  • Shaw, D. M. et al. Phenome risk classification enables phenotypic imputation and gene discovery in developmental stuttering. Am. J. Hum. Genet. 108, 2271–2283 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, K. M. et al. Cohort profile: the National Longitudinal Study of Adolescent to Adult Health (Add Health). Int. J. Epidemiol. 48, 1415–1415k (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand, E. Y., Do, C. B., Mountain, J. L. & Macpherson, J. M. Ancestry composition: a novel, efficient pipeline for ancestry deconvolution. Preprint at https://doi.org/10.1101/010512 (2014).

  • Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. Nat. Genet. 53, 663–671 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Neale Lab. Insights from estimates of SNP-heritability for >2,000 traits and disorders in UK Biobank. http://www.nealelab.is/blog/2017/9/20/insights-from-estimates-of-snp-heritability-for-2000-traits-and-disorders-in-uk-biobank (2017).

  • Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, C. et al. The neural substrates for atypical planning and execution of word production in stuttering. Exp. Neurol. 221, 146–156 (2010).

    PubMed 

    Google Scholar
     

  • Chang, S.-E., Garnett, E. O., Etchell, A. & Chow, H. M. Functional and neuroanatomical bases of developmental stuttering: current insights. Neuroscientist 25, 566–582 (2019).

    PubMed 

    Google Scholar
     

  • Etchell, A. C., Civier, O., Ballard, K. J. & Sowman, P. F. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016. J. Fluen. Disord. 55, 6–45 (2018).


    Google Scholar
     

  • Liu, J. et al. A functional imaging study of self-regulatory capacities in persons who stutter. PLoS ONE 9, e89891 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neef, N. E. et al. Altered morphology of the nucleus accumbens in persistent developmental stuttering. J. Fluen. Disord. 55, 84–93 (2018).


    Google Scholar
     

  • Toyomura, A., Fujii, T. & Kuriki, S. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers. NeuroImage 109, 458–468 (2015).

    PubMed 

    Google Scholar
     

  • Chang, S. E. & Zhu, D. C. Neural network connectivity differences in children who stutter. Brain 136, 3709–3726 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, S.-E., Horwitz, B., Ostuni, J., Reynolds, R. & Ludlow, C. L. Evidence of left inferior frontal–premotor structural and functional connectivity deficits in adults who stutter. Cereb. Cortex 21, 2507–2518 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choo, A. L., Smith, S. A. & Li, H. Associations between stuttering, comorbid conditions and executive function in children: a population-based study. BMC Psychol. 8, 113 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wieland, E. A., McAuley, J. D., Dilley, L. C. & Chang, S.-E. Evidence for a rhythm perception deficit in children who stutter. Brain Lang. 144, 26–34 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garnett, E. O. et al. Auditory rhythm discrimination in adults who stutter: an fMRI study. Brain Lang. 236, 105219 (2023).

    PubMed 

    Google Scholar
     

  • Ladányi, E., Persici, V., Fiveash, A., Tillmann, B. & Gordon, R. L. Is atypical rhythm a risk factor for developmental speech and language disorders? Wiley Interdiscip. Rev. Cogn. Sci. 11, e1528 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruett, D. G. et al. Identifying developmental stuttering and associated comorbidities in electronic health records and creating a phenome risk classifier. J. Fluen. Disord. 68, 105847 (2021).


    Google Scholar
     

  • Arenas, R. M., Walker, E. A. & Oleson, J. J. Developmental stuttering in children who are hard of hearing. Lang. Speech Hear. Serv. Sch. 48, 234–248 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strom, M. A. & Silverberg, J. I. Eczema is associated with childhood speech disorder: a retrospective analysis from the National Survey of Children’s Health and the National Health Interview Survey. J. Pediatrics 168, 185–192.e4 (2016).


    Google Scholar
     

  • Ajdacic-Gross, V. et al. Subtypes of stuttering determined by latent class analysis in two Swiss epidemiological surveys. PLoS ONE 13, e0198450 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briley, P. M. & Merlo, S. Presence of allergies and their impact on sleep in children who stutter. Perspect. ASHA Spec. Interest Groups 5, 1454–1466 (2020).


    Google Scholar
     

  • Jacobs, M. M., Merlo, S. & Briley, P. M. Sleep duration, insomnia, and stuttering: the relationship in adolescents and young adults. J. Commun. Disord. 91, 106106 (2021).

    PubMed 

    Google Scholar
     

  • Merlo, S. & Briley, P. M. Sleep problems in children who stutter: evidence from population data. J. Commun. Disord. 82, 105935 (2019).

    PubMed 

    Google Scholar
     

  • Mohammadi, H. et al. Sleep problems, social anxiety and stuttering severity in adults who do and adults who do not stutter. J. Clin. Med. 12, 161 (2023).


    Google Scholar
     

  • Briley, P. M., Merlo, S. & Ellis, C. Sex differences in childhood stuttering and coexisting developmental disorders. J. Dev. Phys. Disabil. 34, 505–527 (2022).


    Google Scholar
     

  • Lebrun, Y. Stuttering and epilepsy. J. Neurolinguist. 6, 433–444 (1991).


    Google Scholar
     

  • Tomisato, S., Oishi, N., Asano, K., Watanabe, Y. & Ogawa, K. Developmental disability and psychiatric conditions in 39 patients with stuttering. Jpn. J. Logoped. Phoniatr. 57, 7–11 (2016).


    Google Scholar
     

  • Tichenor, S. E., Palasik, S. & Yaruss, J. S. Understanding the broader impact of stuttering: suicidal ideation. Am. J. Speech Lang. Pathol. 32, 2087–2110 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briley, P. M., Gerlach, H. & Jacobs, M. M. Relationships between stuttering, depression, and suicidal ideation in young adults: accounting for gender differences. J. Fluen. Disord. 67, 105820 (2021).


    Google Scholar
     

  • Bernard, R., Hofslundsengen, H. & Frazier Norbury, C. Anxiety and depression symptoms in children and adolescents who stutter: a systematic review and meta-analysis. J. Speech Lang. Hear. Res. 65, 624–644 (2022).

    PubMed 

    Google Scholar
     

  • Iverach, L. & Rapee, R. M. Social anxiety disorder and stuttering: current status and future directions. J. Fluen. Disord. 40, 69–82 (2014).


    Google Scholar
     

  • Tichenor, S. E. & Yaruss, J. S. Stuttering as defined by adults who stutter. J. Speech Lang. Hear. Res. 62, 4356–4369 (2019).

    PubMed 

    Google Scholar
     

  • Tichenor, S. E., Johnson, C. A. & Yaruss, J. S. A preliminary investigation of attention-deficit/hyperactivity disorder characteristics in adults who stutter. J. Speech Lang. Hear. Res. 64, 839–853 (2021).

    PubMed 

    Google Scholar
     

  • Alm, P. A. Stuttering in relation to anxiety, temperament, and personality: review and analysis with focus on causality. J. Fluen. Disord. 40, 5–21 (2014).


    Google Scholar
     

  • Pirinen, V. et al. A comprehensive analysis of speech disfluencies in autistic young adults and control young adults: group differences in typical, stuttering-like, and atypical disfluencies. J. Speech Lang. Hear. Res. 66, 832–848 (2023).

    PubMed 

    Google Scholar
     

  • Plexico, L. W., Cleary, J. E., McAlpine, A. & Plumb, A. M. Disfluency characteristics observed in young children with autism spectrum disorders: a preliminary report. Perspect. Fluen. Fluen. Disord. 20, 42–50 (2010).


    Google Scholar
     

  • Scaler Scott, K., Tetnowski, J. A., Flaitz, J. R. & Yaruss, J. S. Preliminary study of disfluency in school‐aged children with autism. Int. J. Lang. Commun. Disord. 49, 75–89 (2014).

    PubMed 

    Google Scholar
     

  • Tetnowski, J. A. & Donaher, J. Stuttering and autism spectrum disorders: assessment and treatment. Semin. Speech Lang. 43, 117–129 (2022).

    PubMed 

    Google Scholar
     

  • Iverach, L. et al. Mood and substance use disorders among adults seeking speech treatment for stuttering. J. Speech Lang. Hear. Res. 53, 1178–1190 (2010).

    PubMed 

    Google Scholar
     

  • Heelan, M., McAllister, J. & Skinner, J. Stuttering, alcohol consumption and smoking. J. Fluen. Disord. 48, 27–34 (2016).


    Google Scholar
     

  • Ye, T., Shao, J. & Kang, H. Debiased inverse-variance weighted estimator in two-sample summary-data Mendelian randomization. Ann. Stat. 49, 2079–2100 (2021).


    Google Scholar
     

  • Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Prim. 2, 6 (2022).

    CAS 

    Google Scholar
     

  • Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hautakangas, H. et al. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat. Genet. 54, 152–160 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen, P. R. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 51, 394–403 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 9, 2941 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niarchou, M. et al. Genome-wide association study of musical beat synchronization demonstrates high polygenicity. Nat. Hum. Behav. 6, 1292–1309 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghoussaini, M. et al. Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 49, D1311–D1320 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wingate, M. E. & Howell, P. Foundations of stuttering. J. Acoust. Soc. Am. 112, 1229–1231 (2002).


    Google Scholar
     

  • Brady, J. P. Metronome-conditioned speech retraining for stuttering. Behav. Ther. 2, 129–150 (1971).


    Google Scholar
     

  • Brady, J. P. Studies on the metronome effect on stuttering. Behav. Res. Ther. 7, 197–204 (1969).

    CAS 
    PubMed 

    Google Scholar
     

  • Hosseini, R., Walsh, B., Tian, F. & Wang, S. An fNIRS-based feature learning and classification framework to distinguish hemodynamic patterns in children who stutter. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1254–1263 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartwigsen, G., Neef, N. E., Camilleri, J. A., Margulies, D. S. & Eickhoff, S. B. Functional segregation of the right inferior frontal gyrus: evidence from coactivation-based parcellation. Cereb. Cortex 29, 1532–1546 (2019).

    PubMed 

    Google Scholar
     

  • Chesters, J., Möttönen, R. & Watkins, K.E. Neural changes after training with transcranial direct current stimulation to increase speech fluency in adults who stutter. Preprint at https://doi.org/10.31219/osf.io/8st3j (2021).

  • Loucks, T., Kraft, S. J., Choo, A. L., Sharma, H. & Ambrose, N. G. Functional brain activation differences in stuttering identified with a rapid fMRI sequence. J. Fluen. Disord. 36, 302–307 (2011).


    Google Scholar
     

  • Chow, H. M. et al. Linking lysosomal enzyme targeting genes and energy metabolism with altered gray matter volume in children with persistent stuttering. Neurobiol. Lang. 1, 365–380 (2020).


    Google Scholar
     

  • Austin-Zimmerman, I. et al. Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration. Nat. Commun. 14, 6059 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoeler, T. et al. Participation bias in the UK Biobank distorts genetic associations and downstream analyses. Nat. Hum. Behav. 7, 1216–1227 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, K. S., Daliri, A., Flanagan, J. R. & Max, L. Dissociated development of speech and limb sensorimotor learning in stuttering: Speech auditory-motor learning is impaired in both children and adults who stutter. Neuroscience 451, 1–21 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ardila, A. et al. An epidemiologic study of stuttering. J. Commun. Disord. 27, 37–48 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Corcoran, J. A. & Stewart, M. Stories of stuttering. J. Fluen. Disord. 23, 247–264 (1998).


    Google Scholar
     

  • Boyle, M. P. Enacted stigma and felt stigma experienced by adults who stutter. J. Commun. Disord. 73, 50–61 (2018).

    PubMed 

    Google Scholar
     

  • Cox, N. J. & Kidd, K. K. Can recovery from stuttering be considered a genetically milder subtype of stuttering? Behav. Genet. 13, 129–139 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Seider, R. A., Kidd, K. K. & Gladstien, K. L. Recovery and persistence of stuttering among relatives of stutterers. J. Speech Hear. Disord. 48, 402–409 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Ambrose, N. G., Yairi, E., Loucks, T. M., Seery, C. H. & Throneburg, R. Relation of motor, linguistic and temperament factors in epidemiologic subtypes of persistent and recovered stuttering: initial findings. J. Fluen. Disord. 45, 12–26 (2015).


    Google Scholar
     

  • Yairi, E., Ambrose, N. & Cox, N. Genetics of stuttering: a critical review. J. Speech Lang. Hear. Res. 39, 771–784 (1996).

    CAS 

    Google Scholar
     

  • Yairi, E. Subtyping stuttering I: a review. J. Fluen. Disord. 32, 165–196 (2007).


    Google Scholar
     

  • Bloodstein, O. & Ratner, N. B. A Handbook on Stuttering 6th edn (Delmar Cengage Learning, 2008).

  • Theys, C., Van Wieringen, A., Sunaert, S., Thijs, V. & De Nil, L. F. A one year prospective study of neurogenic stuttering following stroke: incidence and co-occurring disorders. J. Commun. Disord. 44, 678–687 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Wells, H. R. R. et al. GWAS identifies 44 independent associated genomic loci for self-reported adult hearing difficulty in UK Biobank. Am. J. Hum. Genet. 105, 788–802 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skelton, M. et al. Self‐reported medication use as an alternate phenotyping method for anxiety and depression in the UK Biobank. Am. J. Med. Genet. B Neuropsychiatr. Genet. 186, 389–398 (2021).

    PubMed 

    Google Scholar
     

  • Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 48, 1031–1036 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purves, K. L. et al. A major role for common genetic variation in anxiety disorders. Mol. Psychiatry 25, 3292–3303 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clogg, C. C., Petkova, E. & Haritou, A. Statistical methods for comparing regression coefficients between models. Am. J. Sociol. 100, 1261–1293 (1995).


    Google Scholar
     

  • Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    PubMed Central 

    Google Scholar
     

  • Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    PubMed Central 

    Google Scholar
     

  • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).


    Google Scholar
     

  • Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, J. et al. A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder. Biol. Psychiatry 83, 1044–1053 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buniello, A. et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerring, Z. F., Gamazon, E. R. & Derks, E. M. A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression. PLoS Genet. 15, e1008245 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pividori, M. et al. PhenomeXcan: mapping the genome to the phenome through the transcriptome. Sci. Adv. 6, eaba2083 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, X., Pique-Regi, R. & Luca, F. Integrating molecular QTL data into genome-wide genetic association analysis: probabilistic assessment of enrichment and colocalization. PLoS Genet. 13, e1006646 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berisa, T. & Pickrell, J. K. Approximately independent linkage disequilibrium blocks in human populations. Bioinformatics 32, 283–285 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hukku, A., Sampson, M. G., Luca, F., Pique-Regi, R. & Wen, X. Analyzing and reconciling colocalization and transcriptome-wide association studies from the perspective of inferential reproducibility. Am. J. Hum. Genet. 109, 825–837 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scartozzi, A. Concordance-analysis, version 1.0. Zenodo https://doi.org/10.5281/zenodo.14884575 (2025).