• Hillier, L. W. & Miller, W. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Burt, D. W. Emergence of the chicken as a model organism: implications for agriculture and biology. Poult. Sci. 86, 1460–1471 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Beacon, T. H. & Davie, J. R. The chicken model organism for epigenomic research. Genome 64, 476–489 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Garcia, P., Wang, Y., Viallet, J. & Macek Jilkova, Z. The chicken embryo model: a novel and relevant model for immune-based studies. Front. Immunol. 12, 791081 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wright, D. et al. The genetic architecture of domestication in the chicken: effects of pleiotropy and linkage. Mol. Ecol. 19, 5140–5156 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Flores-Santin, J. & Burggren, W. W. Beyond the chicken: alternative avian models for developmental physiological research. Front. Physiol. 12, 712633 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, W. R. A., Hubbard, S. J., Tickle, C. & Wilson, S. A. The chicken as a model for large-scale analysis of vertebrate gene function. Nat. Rev. Genet. 4, 87–98 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu, Z. et al. Heterogeneity of a dwarf phenotype in Dutch traditional chicken breeds revealed by genomic analyses. Evol. Appl. 14, 1095–1108 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, M.-S. et al. An evolutionary genomic perspective on the breeding of dwarf chickens. Mol. Biol. Evol. 34, 3081–3088 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • van der Eijk, J. A. J. et al. Chicken lines divergently selected on feather pecking differ in immune characteristics. Physiol. Behav. 212, 112680 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lillie, M. et al. Genomic signatures of 60 years of bidirectional selection for 8-week body weight in chickens. Poult. Sci. 97, 781–790 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Smith, J. et al. Fourth report on chicken genes and chromosomes 2022. Cytogenet. Genome Res. 162, 405–528 (2023).

    Article 

    Google Scholar
     

  • Kern, C. et al. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nat. Commun. 12, 1821 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pan, Z. et al. An atlas of regulatory elements in chicken: a resource for chicken genetics and genomics. Sci. Adv. 9, eade1204 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Aguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article 

    Google Scholar
     

  • The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article 

    Google Scholar
     

  • Liu, S. & Fang, L. The CattleGTEx atlas reveals regulatory mechanisms underlying complex traits. Nat. Genet. 54, 1273–1274 (2022).

    Article 

    Google Scholar
     

  • Liu, S. et al. A multi-tissue atlas of regulatory variants in cattle. Nat. Genet. 54, 1438–1447 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Teng, J. et al. A compendium of genetic regulatory effects across pig tissues. Nat. Genet. 56, 112–123 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ellegren, H. et al. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol. 5, 40 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholas, F. W. Online Mendelian inheritance in animals (OMIA): a comparative knowledgebase of genetic disorders and other familial traits in non-laboratory animals. Nucleic Acids Res. 31, 275–277 (2003).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. An EAV-HP Insertion in 5′ flanking region of SLCO1B3 causes blue eggshell in the chicken. PLoS Genet. 9, e1003183 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guan, L., Yang, Q., Gu, M., Chen, L. & Zhang, X. Exon expression QTL (eeQTL) analysis highlights distant genomic variations associated with splicing regulation. Quant. Biol. 2, 71–79 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cui, R. et al. Improving fine-mapping by modeling infinitesimal effects. Nat. Genet. 56, 162–169 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Robins, C. et al. Genetic control of the human brain proteome. Am. J. Hum. Genet. 108, 400–410 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guan, D. et al. Profiling chromatin contacts at micro-scale in the chicken genome. In Int. Plant Anim. Genome Conf. https://pag.confex.com/data/abstract/pag/30/Paper_49134_abstract_25104_translated.html (2023).

  • Noda, D. et al. ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-β/Smad-induced growth arrest of prostate cells. Oncogene 25, 5591–5600 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, H. et al. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 47, D33–D38 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Urbut, S. M., Wang, G., Carbonetto, P. & Stephens, M. Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat. Genet. 51, 187–195 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Genetic dissection of growth traits in a unique chicken advanced intercross line. Front. Genet. 11, 894 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hukku, A., Sampson, M. G., Luca, F., Pique-Regi, R. & Wen, X. Analyzing and reconciling colocalization and transcriptome-wide association studies from the perspective of inferential reproducibility. Am. J. Hum. Genet. 109, 825–837 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet. 15, e1007889 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbeira, A. N. et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biol. 22, 49 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic differences in discovery of genetic effects on gene expression and complex traits. Nat. Genet. 55, 1866–1875 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Connally, N. J. et al. The missing link between genetic association and regulatory function. eLife 11, e74970 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sowa, A. S. et al. Karyopherin α-3 is a key protein in the pathogenesis of spinocerebellar ataxia type 3 controlling the nuclear localization of ataxin-3. Proc. Natl Acad. Sci. USA 115, E2624–E2633 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cao, J. et al. Effect of combinations of monochromatic lights on growth and productive performance of broilers. Poult. Sci. 91, 3013–3018 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pan, J., Yang, Y., Yang, B. & Yu, Y. Artificial polychromatic light affects growth and physiology in chicks. PLoS One 9, e113595 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schob, C. et al. Dominant KPNA3 mutations cause infantile-onset hereditary spastic paraplegia. Ann. Neurol. 90, 738–750 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Santhanam, N. et al. RatXcan: a framework for cross-species integration of genome-wide association and gene expression data. Preprint at BioRxiv https://doi.org/10.1101/2022.06.03.494719 (2024).

  • Naqvi, S. et al. Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science 365, eaaw7317 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, J. et al. Genome-wide association studies for egg quality traits in White Leghorn layers using low-pass sequencing and SNP chip data. J. Anim. Breed. Genet. 139, 380–397 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qi, T. et al. Genetic control of RNA splicing and its distinct role in complex trait variation. Nat. Genet. 54, 1355–1363 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, L. et al. An atlas of alternative polyadenylation quantitative trait loci contributing to complex trait and disease heritability. Nat. Genet. 53, 994–1005 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Munro, D. et al. Multimodal analysis of RNA sequencing data powers discovery of complex trait genetics. Nat. Commun. 15, 10387 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guan, D. et al. Prediction of transcript isoforms in 19 chicken tissues by Oxford Nanopore long-read sequencing. Front. Genet. 13, 997460 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kuo, R. I. et al. Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human. BMC Genomics 18, 323 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, S., Underwood, J. G., Tseng, E., & Holloway, A. K. Long-read sequencing of chicken transcripts and identification of new transcript isoforms. PLoS ONE 9, e94650 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Comprehensive analysis of structural variants in chickens using PacBio sequencing. Front. Genet. 13, 971588 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kojima, S. et al. Mobile element variation contributes to population-specific genome diversification, gene regulation and disease risk. Nat. Genet. 55, 939–951 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wicker, T. et al. The repetitive landscape of the chicken genome. Genome Res. 15, 126–136 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. De novo assembly of 20 chicken genomes reveals the undetectable phenomenon for thousands of core genes on microchromosomes and subtelomeric regions. Mol. Biol. Evol. 39, msac066 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Morris, J. A. et al. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Science 380, eadh7699 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mai, C. et al. Implications of gene inheritance patterns on the heterosis of abdominal fat deposition in chickens. Genes 10, 824 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yi, G. et al. In-depth duodenal transcriptome survey in chickens with divergent feed efficiency using RNA-Seq. PLoS ONE 10, e0136765 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, Z. et al. Integrated analysis of lncRNA and mRNA repertoires in Marek’s disease infected spleens identifies genes relevant to resistance. BMC Genomics 20, 245 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jehl, F. et al. An integrative atlas of chicken long non-coding genes and their annotations across 25 tissues. Sci. Rep. 10, 20457 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, C. et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article 

    Google Scholar
     

  • van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).


    Google Scholar
     

  • Xia, Z. et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types. Nat. Commun. 5, 5274 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhong, C. et al. Age-dependent genetic architectures of chicken body weight explored by multidimensional GWAS and molQTL analyses. J. Genet. Genomics 51, 1423–1434 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, X. et al. Runs of homozygosity and selection signature analyses reveal putative genomic regions for artificial selection in layer breeding. BMC Genomics 25, 638 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, J. et al. Calcium deposition in chicken eggshells: role of host genetics and gut microbiota. Poult. Sci. 103, 104073 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Degalez, F. et al. Enriched atlas of lncRNA and protein-coding genes for the GRCg7b chicken assembly and its functional annotation across 47 tissues. Sci. Rep. 14, 6588 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Taylor-Weiner, A. et al. Scaling computational genomics to millions of individuals with GPUs. Genome Biol. 20, 228 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479–1485 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Article 

    Google Scholar
     

  • R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2022).

  • Yin, L. et al. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics Proteomics Bioinformatics 19, 619–628 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • VanRaden, P. M. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the “sum of single effects” model. PLoS Genet. 18, e1010299 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duong, D. et al. Applying meta-analysis to genotype-tissue expression data from multiple tissues to identify eQTLs and increase the number of eGenes. Bioinformatics 33, i67–i74 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Speagle, J. S. A conceptual introduction to Markov chain Monte Carlo methods. Preprint at https://doi.org/10.48550/arXiv.1909.12313 (2020).

  • Storey, J. D., Bass, A. J., Dabney, A. & Robinson, D. qvalue: Q-value estimation for false discovery rate control. GitHub https://github.com/StoreyLab/qvalue (2022).

  • Wen, X., Pique-Regi, R. & Luca, F. Integrating molecular QTL data into genome-wide genetic association analysis: probabilistic assessment of enrichment and colocalization. PLoS Genet. 13, e1006646 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y., Luca, F., Pique-Regi, R. & Wen, X. Bayesian multi-SNP genetic association analysis: control of FDR and use of summary statistics. Preprint at https://doi.org/10.1101/316471 (2018).

  • Wen, X., Lee, Y., Luca, F. & Pique-Regi, R. Efficient integrative multi-SNP association analysis via deterministic approximation of posteriors. Am. J. Hum. Genet. 98, 1114–1129 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wen, X. Molecular QTL discovery incorporating genomic annotations using Bayesian false discovery rate control. Ann. Appl. Stat. 10, 1619–1638 (2016).

    Article 

    Google Scholar
     

  • Bhattacharya, A. et al. Best practices for multi-ancestry, meta-analytic transcriptome-wide association studies: lessons from the Global Biobank Meta-analysis Initiative. Cell Genomics 2, 100180 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guan, D. Chicken genotype-tissue expression (ChickenGTEx) project. Zenodo https://doi.org/10.5281/zenodo.14902956 (2025).