• Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).


    Google Scholar
     

  • Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKernan, K. J. et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 19, 1527–1541 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronaghi, M., Uhlén, M. & Nyrén, P. A sequencing method based on real-time pyrophosphate. Science 281, 363–365 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, A. D., Xuan, Z. & Zhang, M. Q. Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics 9, 128 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schatz, M. C. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics 25, 1363–1369 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krawitz, P. et al. Microindel detection in short-read sequence data. Bioinformatics 26, 722–729 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Quinlan, A. R., Stewart, D. A., Strömberg, M. P. & Marth, G. T. Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat. Methods 5, 179–181 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Koboldt, D. C. et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 2283–2285 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibbs, R. A. The Human Genome Project changed everything. Nat. Rev. Genet. 21, 575–576 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillier, L. W. et al. Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods 5, 183–188 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Garber, M. et al. Closing gaps in the human genome using sequencing by synthesis. Genome Biol. 10, R60 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, G. D. et al. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol. 10, 206 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed 

    Google Scholar
     

  • Cheung, M. K., Au, C. H., Chu, K. H., Kwan, H. S. & Wong, C. K. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J. 4, 1053–1059 (2010).

    PubMed 

    Google Scholar
     

  • Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Parchman, T. L., Geist, K. S., Grahnen, J. A., Benkman, C. W. & Buerkle, C. A. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11, 180 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, G. et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res. 20, 646–654 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, A. P. M., Weber, K. L., Carr, K., Wilkerson, C. & Ohlrogge, J. B. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol. 144, 32–42 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, H. et al. Transcriptome analysis for caenorhabditis elegans based on novel expressed sequence tags. BMC Biol. 6, 30 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bainbridge, M. N. et al. Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7, 246 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Wheeler, D. A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bainbridge, M. N. et al. Whole exome capture in solution with 3 Gbp of data. Genome Biol. 11, R62 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677–681 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, K., Schulz, M. H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selvaraj, S., Schmitt, A. D., Dixon, J. R. & Ren, B. Complete haplotype phasing of the MHC and KIR loci with targeted HaploSeq. BMC Genomics 16, 900 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mose, L. E., Wilkerson, M. D., Hayes, D. N., Perou, C. M. & Parker, J. S. ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics 30, 2813–2815 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritz, A., Paris, P. L., Ittmann, M. M., Collins, C. & Raphael, B. J. Detection of recurrent rearrangement breakpoints from copy number data. BMC Bioinformatics 12, 114 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffith, M. et al. Optimizing cancer genome sequencing and analysis. Cell Syst. 1, 210–223 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. SOAPfusion: a robust and effective computational fusion discovery tool for RNA-seq reads. Bioinformatics 29, 2971–2978 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Rustagi, N. et al. ITD assembler: an algorithm for internal tandem duplication discovery from short-read sequencing data. BMC Bioinformatics 17, 188 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38, e178 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • International HapMap Consortium The International Hapmap Project. Nature 426, 789–796 (2003).


    Google Scholar
     

  • 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).


    Google Scholar
     

  • Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, R. E. et al. Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korbel, J. O. et al. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 10, R23 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hormozdiari, F., Alkan, C., Eichler, E. E. & Sahinalp, S. C. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res. 19, 1270–1278 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bamshad, M. J. et al. The centers for Mendelian genomics: a new large-scale initiative to identify the genes underlying rare Mendelian conditions. Am. J. Med. Genet. A 158A, 1523–1525 (2012).

    PubMed 

    Google Scholar
     

  • Baxter, S. M. et al. Centers for Mendelian genomics: a decade of facilitating gene discovery. Genet. Med. 24, 784–797 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, D. J. The TOPMed genomic resource for human health. Nat. Rev. Genet. 22, 200 (2021).

    PubMed 

    Google Scholar
     

  • All of Us Research Program Genomics Investigators Genomic data in the all of us research program. Nature 627, 340–346 (2024).


    Google Scholar
     

  • Conroy, M. C. et al. UK Biobank: a globally important resource for cancer research. Br. J. Cancer 128, 519–527 (2023).

    PubMed 

    Google Scholar
     

  • Mullard, A. The UK Biobank at 20. Nat. Rev. Drug Discov. 21, 628–629 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • 100,000 Genomes Project Pilot Investigators et al. 100,000 genomes pilot on rare-disease diagnosis in health care — preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).


    Google Scholar
     

  • Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cancer Genome Atlas Research Network et al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    PubMed Central 

    Google Scholar
     

  • International Cancer Genome Consortium et al. International network of cancer genome projects. Nature 464, 993–998 (2010).


    Google Scholar
     

  • ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).


    Google Scholar
     

  • Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    PubMed 

    Google Scholar
     

  • Downing, J. R. et al. The pediatric cancer genome project. Nat. Genet. 44, 619–622 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Creasy, H. H. et al. HMPDACC: a human microbiome project multi-omic data resource. Nucleic Acids Res. 49, D734–D742 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Integrative HMP (iHMP) Research Network Consortium The Integrative Human Microbiome Project. Nature 569, 641–648 (2019).


    Google Scholar
     

  • Waters, A. J. et al. Saturation genome editing of BAP1 functionally classifies somatic and germline variants. Nat. Genet. 56, 1434–1445 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funk, J. S. et al. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat. Genet. 57, 140–153 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahu, S. et al. Saturation genome editing-based clinical classification of BRCA2 variants. Nature 638, 538–545 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Beltran, A., Jiang, X., Shen, Y. & Lehner, B. Site-saturation mutagenesis of 500 human protein domains. Nature 637, 885–894 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H. et al. Functional evaluation and clinical classification of BRCA2 variants. Nature 638, 528–537 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Pulcu, G. S., Mikhailova, E., Choi, L.-S. & Bayley, H. Continuous observation of the stochastic motion of an individual small-molecule walker. Nat. Nanotechnol. 10, 76–83 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, S., Romero-Ruiz, M., Castell, O. K., Bayley, H. & Wallace, M. I. High-throughput optical sensing of nucleic acids in a nanopore array. Nat. Nanotechnol. 10, 986–991 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, J. T. et al. Detecting DNA cytosine methylation using Nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Rand, A. C. et al. Mapping DNA methylation with high-throughput Nanopore sequencing. Nat. Methods 14, 411–413 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sereika, M. et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat. Methods 19, 823–826 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. Y., Faraci, G., Ward, P. M., Emerson, J. F. & Lee, H. Y. High-precision and cost-efficient sequencing for real-time COVID-19 surveillance. Sci. Rep. 11, 13669 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Pauper, M. et al. Long-read trio sequencing of individuals with unsolved intellectual disability. Eur. J. Hum. Genet. 29, 637–648 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Showpnil, I. A. et al. Long-read genome sequencing resolves complex genomic rearrangements in rare genetic syndromes. npj Genom. Med. 9, 66 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rangan, A. et al. Improved characterization of complex β-globin gene cluster structural variants using long-read sequencing. J. Mol. Diagn. 23, 1732–1740 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Sano, Y. et al. Likely pathogenic structural variants in genetically unsolved patients with retinitis pigmentosa revealed by long-read sequencing. J. Med. Genet. 59, 1133–1138 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Au, C. H. et al. Rapid detection of chromosomal translocation and precise breakpoint characterization in acute myeloid leukemia by Nanopore long-read sequencing. Cancer Genet. 239, 22–25 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hitz, B. C. et al. The ENCODE uniform analysis pipelines. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3111932/v1 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • ENCODE Project Consortium A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).


    Google Scholar
     

  • ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).


    Google Scholar
     

  • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grindberg, R. V. et al. RNA-sequencing from single nuclei. Proc. Natl Acad. Sci. USA 110, 19802–19807 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, X. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep. 10, 645 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Trombetta, J. J. et al. Preparation of single-cell RNA-seq libraries for next generation sequencing. Curr. Protoc. Mol. Biol. 107, 4.22.1–4.22.17 (2014).

    PubMed 

    Google Scholar
     

  • Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat. Methods 17, 11–14 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gohil, S. H., Iorgulescu, J. B., Braun, D. A., Keskin, D. B. & Livak, K. J. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 244–256 (2021).

    PubMed 

    Google Scholar
     

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regev, A. et al. The Human Cell Atlas. eLife 6, (2017).

  • Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).


    Google Scholar
     

  • Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zollinger, D. R., Lingle, S. E., Sorg, K., Beechem, J. M. & Merritt, C. R. GeoMx RNA assay: high multiplex, digital, spatial analysis of RNA in FFPE tissue. Methods Mol. Biol. 2148, 331–345 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kulasinghe, A., Berrell, N., Donovan, M. L. & Nilges, B. S. Spatial-omics methods and applications. Methods Mol. Biol. 2880, 101–146 (2025).

    PubMed 

    Google Scholar
     

  • Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kernohan, K. D. & Boycott, K. M. The expanding diagnostic toolbox for rare genetic diseases. Nat. Rev. Genet. 25, 401–415 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Schuetz, R. J. et al. CAVaLRi: an algorithm for rapid identification of diagnostic germline variation. Hum. Mutat. 2024, 6411444 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype–phenotype associations. Bioinformatics 35, 4851–4853 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slavotinek, A. et al. Predicting genes from phenotypes using Human Phenotype Ontology (HPO) terms. Hum. Genet. 141, 1749–1760 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Stark, Z. & Scott, R. H. Genomic newborn screening for rare diseases. Nat. Rev. Genet. 24, 755–766 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Kingsmore, S. F. et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 109, 1605–1619 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimmock, D. et al. Project baby bear: rapid precision care incorporating rWGS in 5 California children’s hospitals demonstrates improved clinical outcomes and reduced costs of care. Am. J. Hum. Genet. 108, 1231–1238 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Köhler, S. et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).

    PubMed 

    Google Scholar
     

  • Wanders, R. J. A. et al. Translational metabolism: a multidisciplinary approach towards precision diagnosis of inborn errors of metabolism in the omics era. J. Inherit. Metab. Dis. 42, 197–208 (2019).

    PubMed 

    Google Scholar
     

  • Dragojlovic, N. et al. The cost and diagnostic yield of exome sequencing for children with suspected genetic disorders: a benchmarking study. Genet. Med. 20, 1013–1021 (2018).

    PubMed 

    Google Scholar
     

  • Tarailo-Graovac, M. et al. Exome sequencing and the management of neurometabolic disorders. N. Engl. J. Med. 374, 2246–2255 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 29, 1681–1691 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Rehm, H. L. et al. ClinGen — the clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boycott, K. M., Azzariti, D. R., Hamosh, A. & Rehm, H. L. Seven years since the launch of the matchmaker exchange: the evolution of genomic matchmaking. Hum. Mutat. 43, 659–667 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Vollger, M. R. et al. Synchronized long-read genome, methylome, epigenome and transcriptome profiling resolve a Mendelian condition. Nat. Genet. 57, 469–479 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorzynski, J. E. et al. Ultrarapid Nanopore genome sequencing in a critical care setting. N. Engl. J. Med. 386, 700–702 (2022).

    PubMed 

    Google Scholar
     

  • Cheng, D. T. et al. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suehnholz, S. P. et al. Quantifying the expanding landscape of clinical actionability for patients with cancer. Cancer Discov. 14, 49–65 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Mechahougui, H., Gutmans, J., Colarusso, G., Gouasmi, R. & Friedlaender, A. Advances in personalized oncology. Cancers 16, 2862 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edsjö, A. et al. Current and emerging sequencing-based tools for precision cancer medicine. Mol. Asp. Med. 96, 101250 (2024).


    Google Scholar
     

  • Steen, C. B., Liu, C. L., Alizadeh, A. A. & Newman, A. M. Profiling cell type abundance and expression in bulk tissues with CIBERSORTx. Methods Mol. Biol. 2117, 135–157 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48, W509–W514 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, H.-Y., Chung, K.-S. K., Kan, C.-M. & Wong, S.-C. C. Liquid biopsy in the clinical management of cancers. Int. J. Mol. Sci. 25, 8594 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazzone, P. J. et al. Clinical validation of a cell-free DNA fragmentome assay for augmentation of lung cancer early detection. Cancer Discov. 14, 2224–2242 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, D. et al. Early cancer detection in Li-Fraumeni syndrome with cell-free DNA. Cancer Discov. 14, 104–119 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • van der Pol, Y. et al. Real-time analysis of the cancer genome and fragmentome from plasma and urine cell-free DNA using nanopore sequencing. EMBO Mol. Med. 15, e17282 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Djirackor, L. et al. Intraoperative DNA methylation classification of brain tumors impacts neurosurgical strategy. Neurooncol Adv. 3, vdab149 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermeulen, C. et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 622, 842–849 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, K. et al. Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes. Cell Genom. 4, 100674 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedrosian, T. A. et al. Detection of brain somatic variation in epilepsy-associated developmental lesions. Epilepsia 63, 1981–1997 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Miller, K. E. et al. Post-zygotic rescue of meiotic errors causes brain mosaicism and focal epilepsy. Nat. Genet. 55, 1920–1928 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, K. E. et al. Somatic mosaicism correlates with clinical findings in epilepsy brain tissue. Neurol. Genet. 6, e460 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koboldt, D. C. et al. PTEN somatic mutations contribute to spectrum of cerebral overgrowth. Brain 144, 2971–2978 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cottrell, C. E. et al. Somatic PIK3R1 variation as a cause of vascular malformations and overgrowth. Genet. Med. 23, 1882–1888 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegel, D. H. et al. Analyzing the genetic spectrum of vascular anomalies with overgrowth via cancer genomics. J. Invest. Dermatol. 138, 957–967 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Irtyuga, O. et al. The role of NOTCH pathway genes in the inherited susceptibility to aortic stenosis. J. Cardiovasc. Dev. Dis. 11, 226 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Usoltsev, D. et al. Complex trait susceptibilities and population diversity in a sample of 4,145 Russians. Nat. Commun. 15, 6212 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skitchenko, R. et al. CR1 variants contribute to FSGS susceptibility across multiple populations. iScience 28, 112234 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bocher, O., Willer, C. J. & Zeggini, E. Unravelling the genetic architecture of human complex traits through whole genome sequencing. Nat. Commun. 14, 3520 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Artomov, M., Loboda, A. A., Artyomov, M. N. & Daly, M. J. Public platform with 39,472 exome control samples enables association studies without genotype sharing. Nat. Genet. 56, 327–335 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malhotra, Y. et al. Advancements in protein structure prediction: a comparative overview of AlphaFold and its derivatives. Comput. Biol. Med. 188, 109842 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Collins, R. L. & Talkowski, M. E. Diversity and consequences of structural variation in the human genome. Nat. Rev. Genet. 26, 443–462 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Sedlazeck, F. J. et al. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 19, 329–346 (2018).

    CAS 
    PubMed 

    Google Scholar