• Maura, F. et al. Moving from cancer burden to cancer genomics for smoldering myeloma: a review. JAMA Oncol. 6, 425–432 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgan, G. J., Walker, B. A. & Davies, F. E. The genetic architecture of multiple myeloma. Nat. Rev. Cancer 12, 335–348 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Manier, S. et al. Genomic complexity of multiple myeloma and its clinical implications. Nat. Rev. Clin. Oncol. 14, 100–113 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Rajkumar, S. V., Landgren, O. & Mateos, M. V. Smoldering multiple myeloma. Blood 125, 3069–3075 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kyle, R. A. et al. Long-term follow-up of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 378, 241–249 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kyle, R. A. et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 356, 2582–2590 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Barwick, B. G., Gupta, V. A., Vertino, P. M. & Boise, L. H. Cell of origin and genetic alterations in the pathogenesis of multiple myeloma. Front. Immunol. 10, 1121 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergsagel, P. L. et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106, 296–303 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chesi, M. & Bergsagel, P. L. Molecular pathogenesis of multiple myeloma: basic and clinical updates. Int. J. Hematol. 97, 313–323 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chesi, M. et al. Dysregulation of cyclin D1 by translocation into an IgH γ switch region in two multiple myeloma cell lines. Blood 88, 674–681 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Chesi, M. et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat. Genet. 16, 260–264 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chojnacka, M., Diamond, B., Landgren, O. & Maura, F. Defining genomic events involved in the evolutionary trajectories of myeloma and its precursor conditions. Semin. Oncol. 49, 11–18 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cirrincione, A. et al. Revealing novel mechanisms underlying inactivation of tumor suppressor genes on duplicated chromosomes in multiple myeloma. Blood 142, 874–874 (2023).


    Google Scholar
     

  • Fonseca, R. et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 102, 2562–2567 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Rustad, E. H. et al. Revealing the impact of structural variants in multiple myeloma. Blood Cancer Discov. 1, 258–273 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, B. A. et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J. Clin. Oncol. 33, 3911–3920 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Walker, B. A. et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 33, 159–170 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergsagel, P. L. et al. Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc. Natl Acad. Sci. USA 93, 13931–13936 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolli, N. et al. Genomic patterns of progression in smoldering multiple myeloma. Nat. Commun. 9, 3363 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyle, E. M. et al. The molecular make up of smoldering myeloma highlights the evolutionary pathways leading to multiple myeloma. Nat. Commun. 12, 293 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maura, F. et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat. Commun. 10, 3835 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Misund, K. et al. MYC dysregulation in the progression of multiple myeloma. Leukemia 34, 322–326 (2020).

    PubMed 

    Google Scholar
     

  • Smadja, N. V. et al. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer 38, 234–239 (2003).

    PubMed 

    Google Scholar
     

  • Bolli, F. et al. Genomic patterns of progression in smoldering multiple myeloma. Nat. Commun. 9, 3363 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barwick, B. G. et al. Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. Nat. Commun. 10, 1911 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rustad, E. H. et al. Timing the initiation of multiple myeloma. Nat. Commun. 11, 1917 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bustoros, M. et al. Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression. J. Clin. Oncol. 38, 2380–2389 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oben, B. et al. Whole-genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities. Nat. Commun. 12, 1861 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, B. A. et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood 132, 587–597 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Agostino, M. et al. Second Revision of the International Staging System (R2-ISS) for overall survival in multiple myeloma: a European Myeloma Network (EMN) report within the HARMONY project. J. Clin. Oncol. 40, 3406–3418 (2022).

    PubMed 

    Google Scholar
     

  • Weinhold, N. et al. Chromosome 1q21 abnormalities refine outcome prediction in patients with multiple myeloma: a meta-analysis of 2,596 trial patients. Haematologica 106, 2754–2758 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, B. A. et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 33, 159–170 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Maura, F. et al. Genomic classification and individualized prognosis in multiple myeloma. J. Clin. Oncol. 42, 1229–1240 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Kaiser, M. F. et al. Co-occurrence of cytogenetic abnormalities and high-risk disease in newly diagnosed and relapsed/refractory multiple myeloma. J. Clin. Oncol. https://doi.org/10.1200/jco-24-01253 (2025).

  • Weinhold, N. et al. Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood 128, 1735–1744 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lannes, R. et al. In multiple myeloma, high-risk secondary genetic events observed at relapse are present from diagnosis in tiny, undetectable subclonal populations. J. Clin. Oncol. 41, 1695–1702 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623 e617 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldschmidt, H. et al. Elotuzumab in combination with lenalidomide, bortezomib, dexamethasone and autologous transplantation for newly-diagnosed multiple myeloma: results from the randomized phase III GMMG-HD6 trial. Blood 138, 486 (2021).


    Google Scholar
     

  • Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maura, F. et al. A practical guide for mutational signature analysis in hematological malignancies. Nat. Commun. 10, 2969 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Degasperi, A. et al. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 376, abl9283 (2022).


    Google Scholar
     

  • Walker, B. A. et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat. Commun. 6, 6997 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Maura, F. et al. Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines. Leukemia 32, 1044–1048 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samur, M. K. et al. Genome-wide somatic alterations in multiple myeloma reveal a superior outcome group. J. Clin. Oncol. 38, 3107–3118 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Luquette, L. J. et al. Single-cell genome sequencing of human neurons identifies somatic point mutation and indel enrichment in regulatory elements. Nat. Genet. 54, 1564–1571 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machado, H. E. et al. Diverse mutational landscapes in human lymphocytes. Nature 608, 724–732 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maura, F. et al. The mutagenic impact of melphalan in multiple myeloma. Leukemia 35, 2145–2150 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • D’Agostino, M. et al. Early relapse risk in patients with newly diagnosed multiple myeloma characterized by next-generation sequencing. Clin. Cancer Res. 26, 4832–4841 (2020).

    PubMed 

    Google Scholar
     

  • Misund, K. et al. Clonal evolution after treatment pressure in multiple myeloma: heterogenous genomic aberrations and transcriptomic convergence. Leukemia 36, 1887–1897 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maura, F., Rustad, E. H., Boyle, E. M. & Morgan, G. J. Reconstructing the evolutionary history of multiple myeloma. Best Pract. Res. Clin. Haematol. 33, 101145 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rustad, E. H. et al. mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies. Commun. Biol. 4, 424 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254 e2239 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, D. et al. Detection and prevalence of monoclonal gammopathy of undetermined significance: a study utilizing mass spectrometry-based monoclonal immunoglobulin rapid accurate mass measurement. Blood Cancer J. 9, 102 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorsteinsdottir, S. et al. Prevalence of smoldering multiple myeloma based on nationwide screening. Nat. Med. 29, 467–472 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cirrincione, A. M. et al. The biological and clinical impact of deletions before and after large chromosomal gains in multiple myeloma. Blood https://doi.org/10.1182/blood.2024024299 (2024).

    PubMed 

    Google Scholar
     

  • Poos, A. M. et al. Resolving therapy resistance mechanisms in multiple myeloma by multiomics subclone analysis. Blood 142, 1633–1646 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diamond, B. et al. Tracking the evolution of therapy-related myeloid neoplasms using chemotherapy signatures. Blood 141, 2359–2371 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maura, F. et al. Initial whole-genome sequencing of plasma cell neoplasms in first responders and recovery workers exposed to the World Trade Center attack of September 11, 2001. Clin. Cancer Res. 27, 2111–2118 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landgren, O. et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113, 5412–5417 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diamond, B. T. et al. Tracking the evolution of therapy-related myeloid neoplasms using chemotherapy signatures. Blood https://doi.org/10.1182/blood.2022018244 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fonseca, R. et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia 20, 2034–2040 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, T. M., Fonseca, R. & Usmani, S. Z. Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J. 11, 83 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, V. et al. Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia 32, 102–110 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Croft, J. et al. Copy number evolution and its relationship with patient outcome—an analysis of 178 matched presentation-relapse tumor pairs from the Myeloma XI trial. Leukemia 35, 2043–2053 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, T. M. et al. Gain of chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 9, 94 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdallah, N. et al. Clinical characteristics and treatment outcomes of newly diagnosed multiple myeloma with chromosome 1q abnormalities. Blood Adv. 4, 3509–3519 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perrot, A. et al. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J. Clin. Oncol. 37, 1657–1665 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korde, N. et al. Treatment with carfilzomib-lenalidomide-dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol. 1, 746–754 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landgren, O. et al. Safety and effectiveness of weekly carfilzomib, lenalidomide, dexamethasone, and daratumumab combination therapy for patients with newly diagnosed multiple myeloma: the MANHATTAN nonrandomized Clinical trial. JAMA Oncol. 7, 862–868 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maura, F. et al. Genomic and immune signatures predict clinical outcome in newly diagnosed multiple myeloma treated with immunotherapy regimens. Nat. Cancer https://doi.org/10.1038/s43018-023-00657-1 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landau, H. J. et al. Accelerated single cell seeding in relapsed multiple myeloma. Nat. Commun. 11, 3617 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reisinger, E. et al. OTP: an automatized system for managing and processing NGS data. J. Biotechnol. 261, 53–62 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).


    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashby, C. et al. Structural variants shape the genomic landscape and clinical outcome of multiple myeloma. Blood Cancer J. 12, 85 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Degasperi, A. et al. A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies. Nat. Cancer 1, 249–263 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maura, F. et al. Molecular evolution of classic Hodgkin lymphoma revealed through whole-genome sequencing of Hodgkin and Reed Sternberg cells. Blood Cancer Discov. 4, 208–227 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagnon, M. F. et al. Superior detection rate of plasma cell FISH using FACS-FISH. Am. J. Clin. Pathol. 161, 60–70 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Peterson, J. F. et al. Whole genome mate-pair sequencing of plasma cell neoplasm as a novel diagnostic strategy: a case of unrecognized t(2;11) structural variation. Clin. Lymphoma Myeloma Leuk. 19, 598–602 (2019).

    PubMed 

    Google Scholar
     

  • Sidana, S. et al. Rapid assessment of hyperdiploidy in plasma cell disorders using a novel multi-parametric flow cytometry method. Am. J. Hematol. 94, 424–430 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neben, K. et al. Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation. Haematologica 95, 1150–1157 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar