• Tanksley, S. D. & McCouch, S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross-Ibarra, J., Morrell, P. L. & Gaut, B. S. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc. Natl Acad. Sci. USA 104, 8641–8648 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purugganan, M. D. An evolutionary genomic tale of two rice species. Nat. Genet. 46, 931–932 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • World Population Prospects: The 2017 Revision (United Nations, 2017); https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2017_world_population_prospects-2017_revision_databooklet.pdf

  • Nayar, N. M. Origin and cytogenetics of rice. Adv. Genet. 17, 153–292 (1973).

    Article 

    Google Scholar
     

  • Lu, F. et al. Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proc. Natl Acad. Sci. USA 106, 2171–2076 (2009).

    Article 

    Google Scholar
     

  • Ammiraju, J. S. S. et al. Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell 20, 3191–3209 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ammiraju, J. et al. Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant J. 63, 430–442 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wing, R. A., Purugganan, M. D. & Zhang, Q. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 19, 505–517 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X. G. & Zhu, J. K. Precision genome editing heralds rapid de novo domestication for new crops. Cell 184, 1133–1134 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, W.-Y. et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shomura, A. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashikawa, I. et al. Two adjacent nucleotide-binding site–leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180, 2267–2276 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, J. et al. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150, 899–909 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. et al. An integrated physical and genetic map of the rice genome. Plant Cell 14, 537–545 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • International Rice Genome Sequencing Project & Sasaki, T. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article 

    Google Scholar
     

  • Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. A platinum standard pan-genome resource that represents the population structure of Asian rice. Sci. Data 7, 113 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, H. et al. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156–1170.e14 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wing, R. A. Harvesting rice’s dispensable genome. Genome Biol. 16, 217 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaughan, D. A., Morishima, H. & Kadowaki, K. Diversity in the Oryza genus. Curr. Opin. Plant Biol. 6, 139–146 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khush, G. S. in Oryza: From Molecule to Plant (eds Sasaki, T. & Moore, G.) 25–34 (Springer, 1997); https://doi.org/10.1007/978-94-011-5794-0_3

  • Jacquemin, J., Bhatia, D., Singh, K. & Wing, R. A. The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr. Opin. Plant Biol. 16, 147–156 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langham, R. J. et al. Genomic duplication, fractionation and the origin of regulatory novelty. Genetics 166, 935–945 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mussurova, S., Al-Bader, N., Zuccolo, A. & Wing, R. A. Potential of platinum standard reference genomes to exploit natural variation in the wild relatives of rice. Front. Plant Sci. 11, 579980 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fornasiero, A., Wing, R. A. & Ronald, P. Rice domestication. Curr. Biol. 32, R20–R24 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutaker, R. M. et al. Scaling up neodomestication for climate-ready crops. Curr. Opin. Plant Biol. 66, 102169 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Devos, K. M., Brown, J. K. M. & Bennetzen, J. L. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12, 1075–1079 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, J., Devos, K. M. & Bennetzen, J. L. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res. 14, 860–869 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Baidouri, M. & Panaud, O. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biol. Evol. 5, 954–965 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, e38 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badaeva, E. D. et al. Chromosomal rearrangements in wheat: their types and distribution. Genome 50, 907–926 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raskina, O., Barber, J. C., Nevo, E. & Belyayev, A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet. Genome Res. 120, 351–357 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molnár, I., Cifuentes, M., Schneider, A., Benavente, E. & Molnár-Láng, M. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann. Bot. 107, 65–76 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, L.-Z. et al. Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Commun. Biol. 2, 278 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. DNA barcoding of Oryza: conventional, specific, and super barcodes. Plant Mol. Biol. 105, 215–228 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, X.-H. et al. Multiple origins of BBCC allopolyploid species in the rice genus (Oryza). Sci. Rep. 5, 14876 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shenton, M. et al. Evolution and diversity of the wild rice Oryza officinalis complex, across continents, genome types, and ploidy levels. Genome Biol. Evol. 12, 413–428 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brar, D. S. & Khush, G. S. in The Wild Oryza Genomes (eds Mondal, T. K. & Henry, R. J.) 1–25 (Springer International Publishing, 2018).

  • To, T.-H., Jung, M., Lycett, S. & Gascuel, O. Fast dating using least-squares criteria and algorithms. Syst. Biol. 65, 82–97 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, X. H., Yang, Z., Doyle, J. J. & Ge, S. Multilocus estimation of divergence times and ancestral effective population sizes of Oryza species and implications for the rapid diversification of the genus. New Phytol. 198, 1155–1164 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, S., Sang, T., Lu, B.-R. & Hong, D.-Y. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc. Natl Acad. Sci. USA 96, 14400–14405 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, Y. & Ge, S. Origin and phylogeny of Oryza species with the CD genome based on multiple-gene sequence data. Plant Syst. Evol. 249, 55–66 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Nishikawa, T., Vaughan, D. A. & Kadowaki, K. Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes. Theor. Appl. Genet. 110, 696–705 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, F. et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 4, 258–268 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, F. et al. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 7, e36442 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edger, P. P. et al. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 29, 2150–2167 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl Acad. Sci. USA 108, 4069–4074 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, M.-J., Szadkowski, E. & Wendel, J. F. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110, 171–180 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovell, J. T. et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438–444 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douglas, G. M. et al. Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. Proc. Natl Acad. Sci. USA 112, 2806–2811 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. Unbiased subgenome evolution following a recent whole-genome duplication in pear (Pyrus bretschneideri Rehd.). Hortic. Res. 6, 34 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Genomic insights into the origin, adaptive evolution, and herbicide resistance of Leptochloa chinensis, a devastating tetraploid weedy grass in rice fields. Mol. Plant 15, 1045–1058 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Mol. Plant 10, 1293–1306 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Biased mutations and gene losses underlying diploidization of the tetraploid broomcorn millet genome. Plant J. https://doi.org/10.1111/tpj.16085 (2023).

  • Mondal, T. K. et al. Draft genome sequence of first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Sci. Rep. 8, 13698 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garsmeur, O. et al. Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 31, 448–454 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wing, R. A. et al. The Oryza Map Alignment Project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol. Biol. 59, 53–62 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliveira, G., Morishima, H. & Martins, P. Investigations of Plant Genetic Resources in the Amazon Basin with the Emphasis on the Genus Oryza Report of Study Tour 1992/93 (National Institute of Genetics, 1994).

  • Morishima, H. Reports of the Study-Tours for Investigation of Wild and Cultivated Rice Species. Part II (NBRP, 2002); https://shigen.nig.ac.jp/rice/oryzabase/ricereport/

  • Alsantely, A. et al. The International Oryza Map Alignment Project (IOMAP): the Americas—past achievements and future directions. J. Exp. Bot. 74, 1331–1342 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piegu, B. et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16, 1262–1269 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ammiraju, J. S. S. et al. Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J. 52, 342–351 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stein, J. C. et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat. Genet. 50, 285–296 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrison, E. et al. Building pangenome graphs. Nat Methods. 21, 2008–2012 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parmigiani, L. et al. Panacus: fast and exact pangenome growth and core size estimation. Bioinformatics 40, btae720 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, W., Ou, S., Hufford, M. B. & Peterson, T. in Plant Transposable Elements Vol. 2250 (ed. Cho, J.) 55–67 (Springer, 2021).

  • Tempel, S. in Mobile Genetic Elements Vol. 859 (ed. Bigot, Y.) 29–51 (Humana Press, 2012).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoff, K. J. & Stanke, M. Predicting genes in single genomes with AUGUSTUS. Curr. Protoc. Bioinformatics 65, e57 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER-P. Curr. Protoc. Bioinformatics 2014, 4.11.1–4.11.39 (2014).


    Google Scholar
     

  • Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salamov, A. A. & Solovyev, V. V. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 10, 516–522 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conesa, A. & Götz, S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y. & Bennetzen, J. L. The paleontology of intergene retrotransposons of maize. Nat. Genet. 20, 43–45 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, J. & Bennetzen, J. L. Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl Acad. Sci. USA 101, 12404–12410 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford Univ. Press, 2000).

  • Lovell, J. T. et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 11, e78526 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, T. & Schranz, M. E. Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes. Proc. Natl Acad. Sci. USA 116, 2165–2174 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida-Silva, F., Zhao, T., Ullrich, K. K., Schranz, M. E. & Van De Peer, Y. syntenet: an R/Bioconductor package for the inference and analysis of synteny networks. Bioinformatics 39, btac806 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q., Dang, C. C., Vinh, L. S. & Lanfear, R. QMaker: fast and accurate method to estimate empirical models of protein evolution. Syst. Biol. 70, 1046–1060 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C. & Mirarab, S. ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics 38, 4949–4950 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sayyari, E. & Mirarab, S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 33, 1654–1668 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, T. et al. Whole-genome microsynteny-based phylogeny of angiosperms. Nat. Commun. 12, 3498 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haug-Baltzell, A., Stephens, S. A., Davey, S., Scheidegger, C. E. & Lyons, E. SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics 33, 2197–2198 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albert, V. A. & Krabbenhoft, T. J. in Polyploidy Vol. 2545 (ed. Van De Peer, Y.) 19–45 (Springer, 2023).

  • Joyce, B. L. et al. FractBias: a graphical tool for assessing fractionation bias following polyploidy. Bioinformatics 33, 552–554 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo, T., Frith, M. C., Sese, J. & Horton, P. EAGLE: explicit alternative genome likelihood evaluator. BMC Med. Genomics 11, 28 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vera Alvarez, R., Pongor, L. S., Mariño-Ramírez, L. & Landsman, D. TPMCalculator: one-step software to quantify mRNA abundance of genomic features. Bioinformatics 35, 1960–1962 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fornasiero, A. alicefornasiero/IOMAP-3: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.14936239 (2025).

  • Fornasiero, A., Zuccolo, A., Schranz, M. E. & Wing, R. A. Oryza genome evolution through a tetraploid lens. figshare https://doi.org/10.6084/m9.figshare.28622279 (2025).