Anthony, M. A., Bender, S. F. & Van Der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).
van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
Rosenberg, Y. et al. The global biomass and number of terrestrial arthropods. Sci. Adv. 9, eabq4049 (2023).
Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).
Cebrian, J. Role of first-order consumers in ecosystem carbon flow. Ecol. Lett. 7, 232–240 (2004).
Wu, D., Du, E., Eisenhauer, N., Mathieu, J. & Chu, C. Global engineering effects of soil invertebrates on ecosystem functions. Nature 640, 120–129 (2025).
Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. Eur. J. Soil Sci. 62, 105–116 (2011).
Potapov, A. M., Lindo, Z., Buchkowski, R. & Geisen, S. Multiple dimensions of soil food-web research: history and prospects. Eur. J. Soil Biol. 117, 103494 (2023).
Bates, S. T. et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
Fickling, N. W. et al. Light–dark cycles may influence in situ soil bacterial networks and diurnally-sensitive taxa. Ecol. Evol. 14, e11018 (2024).
Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).
de Vries, F., Lau, J., Hawkes, C. & Semchenko, M. Plant–soil feedback under drought: does history shape the future? Trends Ecol. Evol. 38, 708–718 (2023).
Beaumelle, L., De Laender, F. & Eisenhauer, N. Biodiversity mediates the effects of stressors but not nutrients on litter decomposition. eLife 9, e55659 (2020).
Phillips, H. et al. Global change and their environmental stressors have a significant impact on soil biodiversity — a meta-analysis. iScience 27, 110540 (2024).
Zhou, L. et al. Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Glob. Change Biol. 22, 3157–3169 (2016).
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).
Delgado-Baquerizo, M. et al. Soil biodiversity and function under global change. PLoS Biol. 23, e3003093 (2025).
Fonte, S. J., Hsieh, M. & Mueller, N. D. Earthworms contribute significantly to global food production. Nat. Commun. 14, 5713 (2023).
Sun, X. et al. Harnessing soil biodiversity to promote human health in cities. npj Urban Sustain. 3, 5 (2023).
Angst, G. et al. Conceptualizing soil fauna effects on labile and stabilized soil organic matter. Nat. Commun. 15, 5005 (2024).
Chen, S. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl Acad. Sci. USA 115, 4027–4032 (2018).
Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).
Geisen, S. The future of (soil) microbiome studies: current limitations, integration, and perspectives. mSystems 6, e0061321 (2021).
Geisen, S., Lara, E., Mitchell, E. A. D., Völcker, E. & Krashevska, V. Soil protist life matters! Soil Organisms 92, 189–196 (2020).
Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).
Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Phil. Trans. R. Soc. B 375, 20190112 (2020).
Eisenhauer, N. et al. The multidimensionality of soil macroecology. Glob. Ecol. Biogeogr. 30, 4–10 (2021).
Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).
Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891–6896 (2019).
Archidona-Yuste, A., Ciobanu, M., Kardol, P. & Eisenhauer, N. Divergent alpha and beta diversity trends of soil nematode fauna along gradients of environmental change in the Carpathian ecoregion. Commun. Biol. 8, 587 (2025).
Pollierer, M. M. et al. Different patterns, but no temporal decline in temperate forest soil meso- and macrofauna over the last decade. Ecology 106, e70246 (2025).
Caruso, T., Melecis, V., Kagainis, U. & Bolger, T. Population asynchrony alone does not explain stability in species-rich soil animal assemblages: the stabilizing role of forest age on oribatid mite communities. J. Anim. Ecol. 89, 1520–1531 (2020).
Gonzalez, A. et al. Scaling-up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).
Li, Z. et al. Composition and metabolism of microbial communities in soil pores. Nat. Commun. 15, 3578 (2024).
Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).
Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl Acad. Sci. USA 109, 1159–1164 (2012).
Amyntas, A. et al. Shared community history strengthens plant diversity effects on belowground multitrophic functioning. J. Animal Ecol. 94, 555–565 (2023).
Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).
Decaëns, T. Macroecological patterns in soil communities: soil community macroecology. Glob. Ecol. Biogeog. 19, 287–302 (2010).
Potapov, A. M. et al. Rainforest transformation reallocates energy from green to brown food webs. Nature 627, 116–122 (2024).
Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).
Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).
Wu, Y. et al. Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: a meta-analysis. Soil Biol. Biochem. 166, 108578 (2022).
Peddle, S. D. et al. Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol. Rev. Camb. Phil. Soc. 100, 1–18 (2025).
Robinson, J. M., Liddicoat, C., Muñoz-Rojas, M. & Breed, M. F. Restoring soil biodiversity. Curr. Biol. 34, R393–R398 (2024).
Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).
Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).
Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).
Zanne, A. E. et al. Termite sensitivity to temperature affects global wood decay rates. Science 377, 1440–1444 (2022).
Joly, F.-X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 660 (2020).
Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).
Heděnec, P. et al. Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Sci. Rep. 12, 17362 (2022).
Barnes, A. D. et al. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).
Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).
Pollierer, M. M. et al. Compound-specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. Ecol. Monogr. 89, e01384 (2019).
Manlick, P. J., Perryman, N. L., Koltz, A. M., Cook, J. A. & Newsome, S. D. Climate warming restructures food webs and carbon flow in high-latitude ecosystems. Nat. Clim. Change 14, 184–189 (2024).
Jochum, M. & Eisenhauer, N. Out of the dark: using energy flux to connect above- and belowground communities and ecosystem functioning. Eur. J. Soil Sci. 73, e13154 (2021).
Amyntas, A. et al. Soil community history strengthens belowground multitrophic functioning across plant diversity levels in a grassland experiment. Nat. Commun. 15, 10029 (2024).
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
Delgado-Baquerizo, M. et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. N. Phytol. 219, 574–587 (2018).
Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).
Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).
Guerra, C. A. et al. Global hotspots for soil nature conservation. Nature 610, 693–698 (2022).
Eisenhauer, N. et al. A belowground perspective on the nexus between biodiversity change, climate change, and human well-being. J. Sust. Agricult. Environ. 3, e212108 (2024).
Eisenhauer, N. et al. The heterogeneity–diversity–system performance nexus. Natl Sci. Rev. 10, nwad109 (2023).
Bonato Asato, A. E., Wirth, C., Eisenhauer, N. & Hines, J. On the phenology of soil organisms: current knowledge and future steps. Ecol. Evol. 13, e10022 (2023).
Broadbent, A. A. D. et al. Climate change disrupts the seasonal coupling of plant and soil microbial nutrient cycling in an alpine ecosystem. Glob. Change Biol. 30, e17245 (2024).
Carini, P. et al. Effects of spatial variability and relic DNA removal on the detection of temporal dynamics in soil microbial communities. mBio 11, 10–1128 (2020).
Gschwend, F. et al. Long-term stability of soil bacterial and fungal community structures revealed in their abundant and rare fractions. Mol. Ecol. 30, 4305–4320 (2021).
Joos, L. et al. Year-long, multiple-timepoint field studies show the importance of spatiotemporal dynamics and microbial functions in agricultural soil microbiomes. mSystems 10, e0011225 (2025).
Saltonstall, K., Van Breugel, M., Navia, W., Castillo, H. & Hall, J. S. Soil microbial communities in dry and moist tropical forests exhibit distinct shifts in community composition but not diversity with succession. Microbiol. Spectr. 13, e0193124 (2025).
Sun, S., Li, S., Avera, B. N., Strahm, B. D. & Badgley, B. D. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 83, e00966-17 (2017).
Louisson, Z. et al. Land use modification causes slow, but predictable, change in soil microbial community composition and functional potential. Environ. Microbiome 18, 30 (2023).
Boyle, J. A., Murphy, B. K., Ensminger, I., Stinchcombe, J. R. & Frederickson, M. E. Resistance and resilience of soil microbiomes under climate change. Ecosphere 15, e70077 (2024).
Radujković, D. et al. Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients. FEMS Microbiology Ecol. https://doi.org/10.1093/femsec/fix174 (2018).
Cuartero, J., Querejeta, J. I., Prieto, I., Frey, B. & Alguacil, M. M. Warming and rainfall reduction alter soil microbial diversity and co-occurrence networks and enhance pathogenic fungi in dryland soils. Sci. Total Environ. 949, 175006 (2024).
Deslippe, J. R., Hartmann, M., Simard, S. W. & Mohn, W. W. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol. Ecol. 82, 303–315 (2012).
Junggebauer, A. et al. Temporal variation of soil microarthropods in different forest types and regions of central Europe. Oikos 2024, e10513 (2024).
Ganault, P. et al. Soil BON Earthworm — a global initiative on earthworm distribution, traits, and spatiotemporal diversity patterns. Soil Organisms https://doi.org/10.25674/362 (2024)
Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).
Eisenhauer, N., Reich, P. B. & Isbell, F. Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology 93, 2227–2240 (2012).
de Vries, F. T. et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. N. Phytol. 224, 132–145 (2019).
Bennett, A. E. & Groten, K. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu. Rev. Plant. Biol. 73, 649–672 (2022).
Sweeney, C. J., de Vries, F. T., van Dongen, B. E. & Bardgett, R. D. Root traits explain rhizosphere fungal community composition among temperate grassland plant species. N. Phytol. 229, 1492–1507 (2021).
Trivedi, P., Batista, B. D., Bazany, K. E. & Singh, B. K. Plant–microbiome interactions under a changing world: responses, consequences and perspectives. N. Phytol. 234, 1951–1959 (2022).
Laliberté, E. Below-ground frontiers in trait-based plant ecology. N. Phytol. 213, 1597–1603 (2017).
Eisenhauer, N. & Powell, J. R. Plant trait effects on soil organisms and functions. Pedobiologia 65, 1–4 (2017).
Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).
Bennett, J. A. & Klironomos, J. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. N. Phytol. 222, 91–96 (2019).
De Deyn, G. B. & Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Phil. Trans. R. Soc. B 376, 20200170 (2021).
Kaisermann, A., De Vries, F. T., Griffiths, R. I. & Bardgett, R. D. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. N. Phytol. 215, 1413–1424 (2017).
Davis, A. G., Huggins, D. R. & Reganold, J. P. Linking soil health and ecological resilience to achieve agricultural sustainability. Front. Ecol. Environ. 21, 131–139 (2023).
Davis, J. K., Aguirre, L. A., Barber, N. A., Stevenson, P. C. & Adler, L. S. From plant fungi to bee parasites: mycorrhizae and soil nutrients shape floral chemistry and bee pathogens. Ecology 100, e02801 (2019).
Magalhaes, D. M., Lourenção, A. L. & Bento, J. M. S. Beneath the blooms: unearthing the effect of rhizospheric bacteria on floral signals and pollinator preferences. Plant Cell Environ. 47, 782–798 (2024).
Barber, N. A. & Soper Gorden, N. L. How do belowground organisms influence plant–pollinator interactions? J. Plant. Ecol. 8, 1–11 (2015).
Keeler, A. M., Rose-Person, A. & Rafferty, N. E. From the ground up: building predictions for how climate change will affect belowground mutualisms, floral traits, and bee behavior. Clim. Change Ecol. 1, 100013 (2021).
Andras, J. P. et al. Rewilding the small stuff: the effect of ecological restoration on prokaryotic communities of peatland soils. FEMS Microbiol. Ecol. 96, fiaa144 (2020).
Lem, A. J. et al. Does revegetation cause soil microbiota recovery? Evidence from revisiting a revegetation chronosequence 6 years after initial sampling. Restor. Ecol. 30, e13635 (2022).
Stewart, J., de Lima, N. M., Kingsford, R. & Muñoz-Rojas, M. Soil bacterial biodiversity in drylands is dependent on groundcover under increased temperature. J. Sustain. Agricult. Environ. 3, e70027 (2024).
Wu, L. et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 7, 1054–1062 (2022).
Ye, C. et al. Revegetation promotes soil microbial network stability in a novel riparian ecosystem. J. Appl. Ecol. 60, 1572–1586 (2023).
Tedersoo, L., May, T. W. & Smith, M. E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263 (2010).
Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2010).
Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90, 2352–2359 (2009).
Carteron, A., Vellend, M. & Laliberté, E. Mycorrhizal dominance reduces local tree species diversity across US forests. Nat. Ecol. Evol. 6, 370–374 (2022).
Luo, S. et al. Higher productivity in forests with mixed mycorrhizal strategies. Nat. Commun. 14, 1377 (2023).
Mathieu, J., Reynolds, J. W., Fragoso, C. & Hadly, E. Multiple invasion routes have led to the pervasive introduction of earthworms in North America. Nat. Ecol. Evol. 8, 489–499 (2024).
Ferlian, O. et al. Invasive earthworms shift soil microbial community structure in northern North American forest ecosystems. iScience 27, 108889 (2024).
Thouvenot, L. et al. Invasive earthworms can change understory plant community traits and reduce plant functional diversity. iScience 27, 109036 (2024).
Thouvenot, L., Ferlian, O., Horn, L., Jochum, M. & Eisenhauer, N. Effects of earthworm invasion on soil properties and plant diversity after two years of field experiment. NeoBiota 94, 31–56 (2024).
Jochum, M. et al. Earthworm invasion causes declines across soil fauna size classes and biodiversity facets in northern North American forests. Oikos 130, 766–780 (2021).
Scheu, S. The soil food web: structure and perspectives. Eur. J. Soil Biol. 38, 11–20 (2002).
Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ’omics in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).
Semenov, M. Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and prospects. Biol. Bull. Rev. 11, 40–53 (2021).
Mishra, A., Singh, L. & Singh, D. Unboxing the black box — one step forward to understand the soil microbiome: a systematic review. Microb. Ecol. 85, 669–683 (2023).
Bastida, F. et al. Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Mol. Ecol. 29, 752–761 (2020).
Geisen, S. & Bonkowski, M. Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Appl. Soil Ecol. 123, 328–333 (2018).
Porter, T. M. et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 9, 18218 (2019).
Young, M. R. & Hebert, P. D. Unearthing soil arthropod diversity through DNA metabarcoding. PeerJ 10, e12845 (2022).
Kirse, A., Bourlat, S. J., Langen, K. & Fonseca, V. G. Unearthing the potential of soil eDNA metabarcoding — towards best practice advice for invertebrate biodiversity assessment. Front. Ecol. Evol. 9, 630560 (2021).
Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).
Zinger, L. et al. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biol. Biochem. 96, 16–19 (2016).
Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
Coyotzi, S., Pratscher, J., Murrell, J. C. & Neufeld, J. D. Targeted metagenomics of active microbial populations with stable-isotope probing. Curr. Opin. Biotechnol. 41, 1–8 (2016).
Macey, M. C. Genome-resolved metagenomics identifies novel active microbes in biogeochemical cycling within methanol-enriched soil. Environ. Microbiol. Rep. 16, e13246 (2024).
Ivanova, E., Suleymanov, A., Nikitin, D., Semenov, M. & Abakumov, E. Machine learning-based mapping of acidobacteriota and planctomycetota using 16 S rRNA gene metabarcoding data across soils in Russia. Sci. Rep. 15, 23763 (2025).
Thompson, J., Johansen, R., Dunbar, J. & Munsky, B. Machine learning to predict microbial community functions: an analysis of dissolved organic carbon from litter decomposition. PLoS ONE 14, e0215502 (2019).
Pyron, R. A. Unsupervised machine learning for species delimitation, integrative taxonomy, and biodiversity conservation. Mol. Phylogenet. Evol. 189, 107939 (2023).
Edwin, N. R., Fitzpatrick, A. H., Brennan, F., Abram, F. & O’Sullivan, O. An in-depth evaluation of metagenomic classifiers for soil microbiomes. Environ. Microbiome 19, 19 (2024).
Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29, R1036–R1044 (2019).
Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).
Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).
Pereira, M. B., Wallroth, M., Jonsson, V. & Kristiansson, E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genom. 19, 274 (2018).
Vyshenska, D. et al. A standardized quantitative analysis strategy for stable isotope probing metagenomics. mSystems 8, e01280-22 (2023).
Wang, S. et al. Unveiling the top-down control of soil viruses over microbial communities and soil organic carbon cycling: a review. Clim. Smart Agricult. 1, 100022 (2024).
Ahkami, A. H. et al. Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics — review and research perspectives. Soil Biol. Biochem. 189, 109253 (2024).
Belaud, E. et al. In situ soil imaging, a tool for monitoring the hourly to monthly temporal dynamics of soil biota. Biol. Fertil. Soils 60, 1055–1071 (2024).
Nishida, H., Shimoda, Y., Win, K. T. & Imaizumi-Anraku, H. Rhizosphere frame system enables nondestructive live-imaging of legume–rhizobium interactions in the soil. J. Plant Res. 136, 769–780 (2023).
Aleklett, K. et al. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 12, 312–319 (2018).
Mafla-Endara, P. M. et al. Microfluidic chips provide visual access to in situ soil ecology. Commun. Biol. 4, 889 (2021).
Langel, R. & Dyckmans, J. Combined 13C and 15N isotope analysis on small samples using a near-conventional elemental analyzer/isotope ratio mass spectrometer setup. Rapid Commun. Mass. Spectrom. 28, 1019–1022 (2014).
Melody, C., Griffiths, B., Dyckmans, J. & Schmidt, O. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups. PeerJ 4, e2372 (2016).
Zeng, Q., Mei, T., Delgado-Baquerizo, M., Wang, M. & Tan, W. Suppressed phosphorus-mineralizing bacteria after three decades of fertilization. Agricult. Ecosyst. Environ. 323, 107679 (2022).
Kühn, J., Schweitzer, K. & Ruess, L. Diversity and specificity of lipid patterns in basal soil food web resources. PLoS ONE 14, e0221102 (2019).
Whiteman, J. P., Elliott Smith, E. A., Besser, A. C. & Newsome, S. D. A guide to using compound-specific stable isotope analysis to study the fates of molecules in organisms and ecosystems. Diversity 11, 8 (2019).
Steffan, S. A. et al. Microbes are trophic analogs of animals. Proc. Natl Acad. Sci. USA 112, 15119–15124 (2015).
Steffan, S. A. & Dharampal, P. S. Undead food-webs: integrating microbes into the food-chain. Food Webs 18, e00111 (2019).
Land use, land-use change, and forestry: a special report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/land-use-land-use-change-and-forestry/ (2000).
Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. 114, 9575–9580 (2017).
Zhou, T. et al. Promoting effect of plant diversity on soil microbial functionality is amplified over time. One Earth 7, 2139–2148 (2024).
Phillips, H. R. P. et al. Global changes and their environmental stressors have a significant impact on soil biodiversity — a meta-analysis. iScience 27, 110540 (2024).
Lüke, C. & Frenzel, P. Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl. Environ. Microbiol. 77, 6305–6309 (2011).
Purkhold, U. et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol. 66, 5368–5382 (2000).
Van Spanning, R. J. et al. Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem. Nat. Microbiol. 7, 2089–2100 (2022).
Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data Discuss. 12, 1561–1623 (2020).
Schroth, M. H. et al. Above-and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Manag. 32, 879–889 (2012).
Schnyder, E., Bodelier, P. L., Hartmann, M., Henneberger, R. & Niklaus, P. A. Positive diversity–functioning relationships in model communities of methanotrophic bacteria. Ecology 99, 714–723 (2018).
Schnyder, E., Bodelier, P. L., Hartmann, M., Henneberger, R. & Niklaus, P. A. Experimental erosion of microbial diversity decreases soil CH4 consumption rates. Ecology 104, e4178 (2023).
Schnyder, E., Bodelier, P. L., Hartmann, M., Henneberger, R. & Niklaus, P. A. Do temporal and spatial heterogeneity modulate biodiversity–functioning relationships in communities of methanotrophic bacteria? Soil Biol. Biochem. 185, 109141 (2023).
Jiang, O. et al. Loss of microbial diversity increases methane emissions and arsenic release in paddy soils. Sci. Total Environ. 948, 174656 (2024).
Yang, X. et al. Loss of microbial diversity does not decrease γ-HCH degradation but increases methanogenesis in flooded paddy soil. Soil Biol. Biochem. 156, 108210 (2021).
Kool, D. M., Dolfing, J., Wrage, N. & Van Groenigen, J. W. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol. Biochem. 43, 174–178 (2011).
Li, X., Sørensen, P., Olesen, J. E. & Petersen, S. O. Evidence for denitrification as main source of N2O emission from residue-amended soil. Soil Biol. Biochem. 92, 153–160 (2016).
Mathieu, O. et al. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers. Environ. Pollut. 144, 933–940 (2006).
Shan, J. et al. Beyond denitrification: the role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Glob. Change Biol. 27, 2669–2683 (2021).
Wu, B. et al. Synthetic denitrifying communities reveal a positive and dynamic biodiversity–ecosystem functioning relationship during experimental evolution. Microbiol. Spectr. 11, e04528-22 (2023).
Griffiths, B. S. & Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37, 112–129 (2013).
Domeignoz-Horta, L. A. et al. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 11, 3684 (2020).
Thakur, M. P. et al. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob. Change Biol. 21, 4076–4085 (2015).
Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).
Eisenhauer, N. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc. Natl Acad. Sci. USA 110, 6889–6894 (2013).
Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity–ecosystem functioning experiments. Proc. R. Soc. B 287, 20202063 (2020).
Thurner, M. A., Caldararu, S., Engel, J., Rammig, A. & Zaehle, S. Modelled forest ecosystem carbon–nitrogen dynamics with integrated mycorrhizal processes under elevated CO2. Biogeosciences 21, 1391–1410 (2024).
Pavao-Zuckerman, M. A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 16, 642–649 (2008).
Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).
Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: a meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).
Szabó, B. et al. Urbanization decreases species richness, and increases abundance in dry climates whereas decreases in wet climates: a global meta-analysis. Sci. Total Environ. 859, 160145 (2023).
Epp Schmidt, D. J. et al. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 1, 0123 (2017).
Zhang, Y. et al. Increasing antimicrobial resistance and potential human bacterial pathogens in an invasive land snail driven by urbanization. Environ. Sci. Technol. 57, 7273–7284 (2023).
Guilland, C., Maron, P.-A., Damas, O. & Ranjard, L. Biodiversity of urban soils for sustainable cities. Environ. Chem. Lett. 16, 1267–1282 (2018).
Shankar, M. et al. Unearthing the role of soils in urban climate resilience planning. Nat. Sustain. 7, 1374–1376 (2024).
Scherzinger, F. et al. Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate. Nat. Commun. 15, 4930 (2024).
Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).
Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).
Wall, D. H. et al. Soil Ecology and Ecosystem Services (Oxford Univ. Press, 2012).
Wu, H. et al. Unveiling the crucial role of soil microorganisms in carbon cycling: a review. Sci. Total Environ. 909, 168627 (2024).
Chaudhary, S., Sindhu, S. S., Dhanker, R. & Kumari, A. Microbes-mediated sulphur cycling in soil: impact on soil fertility, crop production and environmental sustainability. Microbiol. Res. 271, 127340 (2023).
Naitam, M. G. & Kaushik, R. Archaea: an agro-ecological perspective. Curr. Microbiol 78, 2510–2521 (2021).
Ferris, H. Contribution of nematodes to the structure and function of the soil food web. J. Nematol. 42, 63–67 (2010).
Jansson, J. K. & Wu, R. Soil viral diversity, ecology and climate change. Nat. Rev. Microbiol. 21, 296–311 (2023).
Liang, X. et al. Studying soil viral ecology under an ecosystem services framework. Appl. Soil Ecol. 197, 105339 (2024).
Liang, X. et al. Incorporating viruses into soil ecology: a new dimension to understand biogeochemical cycling. Crit. Rev. Environ. Sci. Technol. 54, 117–137 (2024).
Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).
Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).
Romero, F. et al. Soil health is associated with higher primary productivity across Europe. Nat. Ecol. Evol. 8, 1847–1855 (2024).
Eisenhauer, N., Hines, J., Maestre, F. T. & Rillig, M. C. Reconsidering functional redundancy in biodiversity research. npj Biodivers. 2, 9 (2023).
Ebrahimi, A. & Or, D. Hydration and diffusion processes shape microbial community organization and function in model soil aggregates. Water Resour. Res. 51, 9804–9827 (2015).
Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).
Fan, K. et al. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7, 143 (2019).
Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).
Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).
Sünnemann, M. et al. Climate change and cropland management compromise soil integrity and multifunctionality. Commun. Earth Environ. 4, 394 (2023).
Rillig, M. C. et al. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Change 13, 478–483 (2023).
Thakur, M. P. et al. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Change 8, 75–78 (2018).
Jurburg, S. D., Blowes, S. A., Shade, A., Eisenhauer, N. & Chase, J. M. Synthesis of recovery patterns in microbial communities across environments. Microbiome 12, 79 (2024).
Chomel, M. et al. Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought. Nat. Commun. 13, 6991 (2022).
Siebert, J. et al. The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Sci. Rep. 9, 639 (2019).
Schmidt, A. et al. The iDiv Ecotron — a flexible research platform for multitrophic biodiversity research. Ecol. Evol. 11, 15174–15190 (2021).
Yang, G. et al. Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nat. Commun. 13, 4260 (2022).
Dainese, M. et al. Global change experiments in mountain ecosystems: a systematic review. Ecol. Monogr. 94, e1632 (2024).
Schädler, M. et al. Investigating the consequences of climate change under different land-use regimes: a novel experimental infrastructure. Ecosphere 10, e02635 (2019).
Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).
Mason, E. et al. Participatory soil citizen science: an unexploited resource for European soil research. Eur. J. Soil Sci. 75, e13470 (2024).
Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).
Grover, V. I., Borsdorf, A., Breuste, J., Tiwari, P. C. & Frangetto, F. W. Impact of Global Changes on Mountains: Responses and Adaptation (CRC Press, 2014).
Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).
König, T., Kaufmann, R. & Scheu, S. The formation of terrestrial food webs in glacier foreland: evidence for the pivotal role of decomposer prey and intraguild predation. Pedobiologia 54, 147–152 (2011).
Raso, L. et al. Intraguild predation in pioneer predator communities of alpine glacier forelands. Mol. Ecol. 23, 3744–3754 (2014).
Steinwandter, M., Rief, A., Scheu, S., Traugott, M. & Seeber, J. Structural and functional characteristics of high alpine soil macro-invertebrate communities. Eur. J. Soil Biol. 86, 72–80 (2018).
Hou, W. et al. Functional traits of soil nematodes define their response to nitrogen fertilization. Funct. Ecol. 37, 1197–1210 (2023).
Walker, T. W. et al. Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming. eLife 11, e78555 (2022).
Heemsbergen, D. A. et al. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 1019–1020 (2004).
Eisenhauer, N., Cesarz, S., Koller, R., Worm, K. & Reich, P. B. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Change Biol. 18, 435–447 (2012).
Forey, O. et al. Earthworms do not increase greenhouse gas emissions (CO2 and N2O) in an Ecotron experiment simulating a three-crop rotation system. Sci. Rep. 13, 21920 (2023).
Sauze, J. et al. The need for realistic experimental setups in controlled environments: insights from a two-year Ecotron experiment on earthworms’ impact on ecosystem H2O, CO2 and N2O dynamics. In EGU General Assembly 2024 (ed. European Geosciences Union (EGU) Scientific Programme Committee) EGU24-9685 (Göttingen Copernicus, 2024).
Roy, J. et al. Ecotrons: powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. Glob. Change Biol. 27, 1387–1407 (2021).
Eisenhauer, N. et al. Ecosystem consequences of invertebrate decline. Curr. Biol. 33, 4538–4547.e5 (2023).
Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).
Jin, S. & Chang, H. The trends of blockchain in environmental management research: a bibliometric analysis. Environ. Sci. Pollut. Res. 30, 81707–81724 (2023).
Liu, X., Barenji, A. V., Li, Z., Montreuil, B. & Huang, G. Q. Blockchain-based smart tracking and tracing platform for drug supply chain. Computers Ind. Eng. 161, 107669 (2021).
Singh, B. K., Trivedi, P., Egidi, E., Macdonald, C. A. & Delgado-Baquerizo, M. Crop microbiome and sustainable agriculture. Nat. Rev. Microbiol. 18, 601–602 (2020).
Russell, D. J. et al. Edaphobase 2.0: advanced international data warehouse for collating and using soil biodiversity datasets. Appl. Soil Ecol. 204, 105710 (2024).
Pey, B. et al. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl. Ecol. 15, 194–206 (2014).
Pey, B. et al. A thesaurus for soil invertebrate trait-based approaches. PLoS ONE 9, e108985 (2014).
Lavelle, P. et al. Soil macroinvertebrate communities: a world-wide assessment. Glob. Ecol. Biogeogr. 31, 1261–1276 (2022).
Mathieu, J. et al. sOilFauna — a global synthesis effort on the drivers of soil macrofauna communities and functioning. Soil Organisms 94, 111–126 (2022).
Sarneel, J. M. et al. Reading tea leaves worldwide: decoupled drivers of initial litter decomposition mass-loss rate and stabilization. Ecol. Lett. 27, e14415 (2024).
Maestre, F. T. & Eisenhauer, N. Recommendations for establishing global collaborative networks in soil ecology. Soil Org. 91, 73 (2019).
Burton, V. J. et al. Land use and soil characteristics affect soil organisms differently from above-ground assemblages. BMC Ecol. Evol. 22, 135 (2022).
Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl. Ecol. 11, 473–485 (2010).
Robinson, J. M., Taylor, A., Fickling, N., Sun, X. & Breed, M. F. Sounds of the underground reflect soil biodiversity dynamics across a grassy woodland restoration chronosequence. J. Appl. Ecol. 61, 2047–2060 (2024).
Thakur, M. P. et al. Towards an integrative understanding of soil biodiversity. Biol. Rev. 95, 350–364 (2020).
Chu, H., Gao, G.-F., Ma, Y., Fan, K. & Delgado-Baquerizo, M. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems 5, e00803–e00819 (2020).
Li, W., Zhang, Y., Mao, W., Wang, C. & Yin, S. Functional potential differences between firmicutes and proteobacteria in response to manure amendment in a reclaimed soil. Can. J. Microbiol. 66, 689–697 (2020).
Dawson, W. & Schrama, M. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).
Torres, N., Herrera, I., Fajardo, L. & Bustamante, R. O. Meta-analysis of the impact of plant invasions on soil microbial communities. BMC Ecol. Evol. 21, 172 (2021).
Waldner, T. & Traugott, M. DNA-based analysis of regurgitates: a noninvasive approach to examine the diet of invertebrate consumers. Mol. Ecol. Resour. 12, 669–675 (2012).
Buchkowski, R. W. & Lindo, Z. Stoichiometric and structural uncertainty in soil food web models. Funct. Ecol. 35, 288–300 (2021).
Gauzens, B. et al. fluxweb: an R package to easily estimate energy fluxes in food webs. Meth. Ecol. Evol. 10, 270–279 (2018).
Sünnemann, M. et al. Sustainable land use strengthens microbial and herbivore controls in soil food webs in current and future climates. Glob. Change Biol. 30, e17554 (2024).
Potapov, A. M., Pollierer, M. M., Salmon, S., Šustr, V. & Chen, T. Multidimensional trophic niche revealed by complementary approaches: gut content, digestive enzymes, fatty acids and stable isotopes in collembola. J. Anim. Ecol. 90, 1919–1933 (2021).
Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 41, 599–623 (2017).
Erktan, A., Or, D. & Scheu, S. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).
Baveye, P. C. Ecosystem-scale modelling of soil carbon dynamics: time for a radical shift of perspective? Soil Biol. Biochem. 184, 109112 (2023).
Védère, C., Gonod, L. V., Nunan, N. & Chenu, C. Opportunities and limits in imaging microorganisms and their activities in soil microhabitats. Soil Biol. Biochem. 174, 108807 (2022).
Capowiez, Y., Gilbert, F., Vallat, A., Poggiale, J.-C. & Bonzom, J.-M. Depth distribution of soil organic matter and burrowing activity of earthworms— mesocosm study using X-ray tomography and luminophores. Biol. Fertil. Soils 57, 337–346 (2021).
Capowiez, Y., Bonzom, J.-M., Bottinelli, N. & Gilbert, F. The burrowing and casting dynamics of earthworms are influenced by litter presence as evidenced by repeated scans and a new marker of bioturbation. Appl. Soil Ecol. 202, 105569 (2024).
Heintz-Buschart, A. et al. Microbial diversity–ecosystem function relationships across environmental gradients. Res. Ideas Outcomes 6, e52217 (2020).
Orgiazzi, A. et al. LUCAS soil biodiversity and LUCAS soil pesticides, new tools for research and policy development. Eur. J. Soil Sci. 73, e13299 (2022).
van der Putten, W. H. et al. Soil biodiversity needs policy without borders. Science 379, 32–34 (2023).
Beugnon, R., Zeiss, R., Bönisch, E., Phillips, H. & Jochum, M. Communicating soil biodiversity research to kids around the world. Soil Org. 96, 61–68 (2024).
Guerra, C. A. et al. Foundations for a national assessment of soil biodiversity. J. Sustain. Agricult. Environ. 3, e12116 (2024).
Wirth, C. et al. Faktencheck Artenvielfalt: Bestandsaufnahme Und Perspektiven Für Den Erhalt Der Biologischen Vielfalt in Deutschland (Oekom Science, 2024).
Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).
Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).
Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).
Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).
Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).
Müller, J. et al. Enhancing the structural diversity between forest patches — a concept and real-world experiment to study biodiversity, multifunctionality and forest resilience across spatial scales. Glob. Change Biol. 29, 1437–1450 (2023).
Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).
Jayaramaiah, R. H., Egidi, E., Macdonald, C. A. & Singh, B. K. Linking biodiversity and biotic interactions to ecosystem functioning. J. Sustain. Agricult. Environ. 3, e12119 (2024).
Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).
Auger, G., Pottier, J., Mathieu, J. & Jabot, F. Space use of invertebrates in terrestrial habitats: phylogenetic, functional and environmental drivers of interspecific variations. Glob. Ecol. Biogeog. 33, e13811 (2024).
Bartkowski, B. et al. Potential of the economic valuation of soil-based ecosystem services to inform sustainable soil management and policy. PeerJ 8, e8749 (2020).
Darras, K. F. et al. Reducing fertilizer and avoiding herbicides in oil palm plantations — ecological and economic valuations. Front. For. Glob. Change 2, 65 (2019).
Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).
Paul, C., Kuhn, K., Steinhoff-Knopp, B., Weißhuhn, P. & Helming, K. Towards a standardization of soil-related ecosystem service assessments. Eur. J. Soil Sci. 72, 1543–1558 (2021).
Pascual, U. et al. On the value of soil biodiversity and ecosystem services. Ecosyst. Serv. 15, 11–18 (2015).
Bartkowski, B. Are diverse ecosystems more valuable? Economic value of biodiversity as result of uncertainty and spatial interactions in ecosystem service provision. Ecosyst. Serv. 24, 50–57 (2017).
Plaas, E. et al. Towards valuation of biodiversity in agricultural soils: a case for earthworms. Ecol. Econ. 159, 291–300 (2019).
Schon, N. & Dominati, E. Valuing earthworm contribution to ecosystem services delivery. Ecosyst. Serv. 43, 101092 (2020).
Sidibé, Y., Foudi, S., Pascual, U. & Termansen, M. Adaptation to climate change in rainfed agriculture in the global south: soil biodiversity as natural insurance. Ecol. Econ. 146, 588–596 (2018).
Bartkowski, B. et al. Adoption and potential of agri-environmental schemes in Europe: cross-regional evidence from interviews with farmers. People Nat. 5, 1610–1621 (2023).
Stetter, C. & Cronauer, C. Climate and soil conditions shape farmers’ climate change adaptation preferences. Agricult. Econ. 56, 165–187 (2024).
Bartkowski, B., Massenberg, J. R. & Lienhoop, N. Investigating preferences for soil-based ecosystem services. Q. Open 2, qoac035 (2022).
Franceschinis, C. et al. The effect of social and personal norms on stated preferences for multiple soil functions: evidence from Australia and Italy. Aust. J. Agric. Resour. Econ. 66, 335–362 (2022).
Dessart, F. J., Barreiro-Hurlé, J. & Van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review. Eur. Rev. Agric. Econ. 46, 417–471 (2019).
Köninger, J., Panagos, P., Jones, A., Briones, M. & Orgiazzi, A. In defence of soil biodiversity: towards an inclusive protection in the European Union. Biol. Conserv. 268, 109475 (2022).
Bartkowski, B., Bartke, S., Hagemann, N., Hansjürgens, B. & Schröter-Schlaack, C. Application of the governance disruptions framework to German agricultural soil policy. SOIL 7, 495–509 (2021).
Thamo, T. & Pannell, D. J. Challenges in developing effective policy for soil carbon sequestration: perspectives on additionality, leakage, and permanence. Clim. Policy 16, 973–992 (2016).
Böcker, T., Britz, W., Möhring, N. & Finger, R. An economic and environmental assessment of a glyphosate ban for the example of maize production. Eur. Rev. Agric. Econ. 47, 371–402 (2020).