• Anthony, M. A., Bender, S. F. & Van Der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).

    Article 

    Google Scholar
     

  • van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Article 

    Google Scholar
     

  • Rosenberg, Y. et al. The global biomass and number of terrestrial arthropods. Sci. Adv. 9, eabq4049 (2023).

    Article 

    Google Scholar
     

  • Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).

    Article 

    Google Scholar
     

  • Cebrian, J. Role of first-order consumers in ecosystem carbon flow. Ecol. Lett. 7, 232–240 (2004).

    Article 

    Google Scholar
     

  • Wu, D., Du, E., Eisenhauer, N., Mathieu, J. & Chu, C. Global engineering effects of soil invertebrates on ecosystem functions. Nature 640, 120–129 (2025).

    Article 

    Google Scholar
     

  • Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. Eur. J. Soil Sci. 62, 105–116 (2011).

    Article 

    Google Scholar
     

  • Potapov, A. M., Lindo, Z., Buchkowski, R. & Geisen, S. Multiple dimensions of soil food-web research: history and prospects. Eur. J. Soil Biol. 117, 103494 (2023).

    Article 

    Google Scholar
     

  • Bates, S. T. et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).

    Article 

    Google Scholar
     

  • Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    Article 

    Google Scholar
     

  • Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    Article 

    Google Scholar
     

  • Fickling, N. W. et al. Light–dark cycles may influence in situ soil bacterial networks and diurnally-sensitive taxa. Ecol. Evol. 14, e11018 (2024).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    Article 

    Google Scholar
     

  • de Vries, F., Lau, J., Hawkes, C. & Semchenko, M. Plant–soil feedback under drought: does history shape the future? Trends Ecol. Evol. 38, 708–718 (2023).

    Article 

    Google Scholar
     

  • Beaumelle, L., De Laender, F. & Eisenhauer, N. Biodiversity mediates the effects of stressors but not nutrients on litter decomposition. eLife 9, e55659 (2020).

    Article 

    Google Scholar
     

  • Phillips, H. et al. Global change and their environmental stressors have a significant impact on soil biodiversity — a meta-analysis. iScience 27, 110540 (2024).

    Article 

    Google Scholar
     

  • Zhou, L. et al. Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Glob. Change Biol. 22, 3157–3169 (2016).

    Article 

    Google Scholar
     

  • Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Soil biodiversity and function under global change. PLoS Biol. 23, e3003093 (2025).

    Article 

    Google Scholar
     

  • Fonte, S. J., Hsieh, M. & Mueller, N. D. Earthworms contribute significantly to global food production. Nat. Commun. 14, 5713 (2023).

    Article 

    Google Scholar
     

  • Sun, X. et al. Harnessing soil biodiversity to promote human health in cities. npj Urban Sustain. 3, 5 (2023).

    Article 

    Google Scholar
     

  • Angst, G. et al. Conceptualizing soil fauna effects on labile and stabilized soil organic matter. Nat. Commun. 15, 5005 (2024).

    Article 

    Google Scholar
     

  • Chen, S. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl Acad. Sci. USA 115, 4027–4032 (2018).

    Article 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    Article 

    Google Scholar
     

  • Geisen, S. The future of (soil) microbiome studies: current limitations, integration, and perspectives. mSystems 6, e0061321 (2021).

    Article 

    Google Scholar
     

  • Geisen, S., Lara, E., Mitchell, E. A. D., Völcker, E. & Krashevska, V. Soil protist life matters! Soil Organisms 92, 189–196 (2020).


    Google Scholar
     

  • Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).

    Article 

    Google Scholar
     

  • Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Phil. Trans. R. Soc. B 375, 20190112 (2020).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. The multidimensionality of soil macroecology. Glob. Ecol. Biogeogr. 30, 4–10 (2021).

    Article 

    Google Scholar
     

  • Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891–6896 (2019).

    Article 

    Google Scholar
     

  • Archidona-Yuste, A., Ciobanu, M., Kardol, P. & Eisenhauer, N. Divergent alpha and beta diversity trends of soil nematode fauna along gradients of environmental change in the Carpathian ecoregion. Commun. Biol. 8, 587 (2025).

    Article 

    Google Scholar
     

  • Pollierer, M. M. et al. Different patterns, but no temporal decline in temperate forest soil meso- and macrofauna over the last decade. Ecology 106, e70246 (2025).

    Article 

    Google Scholar
     

  • Caruso, T., Melecis, V., Kagainis, U. & Bolger, T. Population asynchrony alone does not explain stability in species-rich soil animal assemblages: the stabilizing role of forest age on oribatid mite communities. J. Anim. Ecol. 89, 1520–1531 (2020).

    Article 

    Google Scholar
     

  • Gonzalez, A. et al. Scaling-up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

    Article 

    Google Scholar
     

  • Li, Z. et al. Composition and metabolism of microbial communities in soil pores. Nat. Commun. 15, 3578 (2024).

    Article 

    Google Scholar
     

  • Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).

    Article 

    Google Scholar
     

  • Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl Acad. Sci. USA 109, 1159–1164 (2012).

    Article 

    Google Scholar
     

  • Amyntas, A. et al. Shared community history strengthens plant diversity effects on belowground multitrophic functioning. J. Animal Ecol. 94, 555–565 (2023).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    Article 

    Google Scholar
     

  • Decaëns, T. Macroecological patterns in soil communities: soil community macroecology. Glob. Ecol. Biogeog. 19, 287–302 (2010).

    Article 

    Google Scholar
     

  • Potapov, A. M. et al. Rainforest transformation reallocates energy from green to brown food webs. Nature 627, 116–122 (2024).

    Article 

    Google Scholar
     

  • Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).

    Article 

    Google Scholar
     

  • Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

    Article 

    Google Scholar
     

  • Wu, Y. et al. Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: a meta-analysis. Soil Biol. Biochem. 166, 108578 (2022).

    Article 

    Google Scholar
     

  • Peddle, S. D. et al. Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol. Rev. Camb. Phil. Soc. 100, 1–18 (2025).

    Article 

    Google Scholar
     

  • Robinson, J. M., Liddicoat, C., Muñoz-Rojas, M. & Breed, M. F. Restoring soil biodiversity. Curr. Biol. 34, R393–R398 (2024).

    Article 

    Google Scholar
     

  • Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).

    Article 

    Google Scholar
     

  • Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).

    Article 

    Google Scholar
     

  • Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).

    Article 

    Google Scholar
     

  • Zanne, A. E. et al. Termite sensitivity to temperature affects global wood decay rates. Science 377, 1440–1444 (2022).

    Article 

    Google Scholar
     

  • Joly, F.-X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 660 (2020).

    Article 

    Google Scholar
     

  • Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).

    Article 

    Google Scholar
     

  • Heděnec, P. et al. Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Sci. Rep. 12, 17362 (2022).

    Article 

    Google Scholar
     

  • Barnes, A. D. et al. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).

    Article 

    Google Scholar
     

  • Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).

    Article 

    Google Scholar
     

  • Pollierer, M. M. et al. Compound-specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. Ecol. Monogr. 89, e01384 (2019).

    Article 

    Google Scholar
     

  • Manlick, P. J., Perryman, N. L., Koltz, A. M., Cook, J. A. & Newsome, S. D. Climate warming restructures food webs and carbon flow in high-latitude ecosystems. Nat. Clim. Change 14, 184–189 (2024).

    Article 

    Google Scholar
     

  • Jochum, M. & Eisenhauer, N. Out of the dark: using energy flux to connect above- and belowground communities and ecosystem functioning. Eur. J. Soil Sci. 73, e13154 (2021).

    Article 

    Google Scholar
     

  • Amyntas, A. et al. Soil community history strengthens belowground multitrophic functioning across plant diversity levels in a grassland experiment. Nat. Commun. 15, 10029 (2024).

    Article 

    Google Scholar
     

  • Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    Article 

    Google Scholar
     

  • Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. N. Phytol. 219, 574–587 (2018).

    Article 

    Google Scholar
     

  • Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).

    Article 

    Google Scholar
     

  • Rillig, M. C. et al. Interchange of entire communities: microbial community coalescence. Trends Ecol. Evol. 30, 470–476 (2015).

    Article 

    Google Scholar
     

  • Guerra, C. A. et al. Global hotspots for soil nature conservation. Nature 610, 693–698 (2022).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. A belowground perspective on the nexus between biodiversity change, climate change, and human well-being. J. Sust. Agricult. Environ. 3, e212108 (2024).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. The heterogeneity–diversity–system performance nexus. Natl Sci. Rev. 10, nwad109 (2023).

    Article 

    Google Scholar
     

  • Bonato Asato, A. E., Wirth, C., Eisenhauer, N. & Hines, J. On the phenology of soil organisms: current knowledge and future steps. Ecol. Evol. 13, e10022 (2023).

    Article 

    Google Scholar
     

  • Broadbent, A. A. D. et al. Climate change disrupts the seasonal coupling of plant and soil microbial nutrient cycling in an alpine ecosystem. Glob. Change Biol. 30, e17245 (2024).

    Article 

    Google Scholar
     

  • Carini, P. et al. Effects of spatial variability and relic DNA removal on the detection of temporal dynamics in soil microbial communities. mBio 11, 10–1128 (2020).

    Article 

    Google Scholar
     

  • Gschwend, F. et al. Long-term stability of soil bacterial and fungal community structures revealed in their abundant and rare fractions. Mol. Ecol. 30, 4305–4320 (2021).

    Article 

    Google Scholar
     

  • Joos, L. et al. Year-long, multiple-timepoint field studies show the importance of spatiotemporal dynamics and microbial functions in agricultural soil microbiomes. mSystems 10, e0011225 (2025).

    Article 

    Google Scholar
     

  • Saltonstall, K., Van Breugel, M., Navia, W., Castillo, H. & Hall, J. S. Soil microbial communities in dry and moist tropical forests exhibit distinct shifts in community composition but not diversity with succession. Microbiol. Spectr. 13, e0193124 (2025).

    Article 

    Google Scholar
     

  • Sun, S., Li, S., Avera, B. N., Strahm, B. D. & Badgley, B. D. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 83, e00966-17 (2017).

    Article 

    Google Scholar
     

  • Louisson, Z. et al. Land use modification causes slow, but predictable, change in soil microbial community composition and functional potential. Environ. Microbiome 18, 30 (2023).

    Article 

    Google Scholar
     

  • Boyle, J. A., Murphy, B. K., Ensminger, I., Stinchcombe, J. R. & Frederickson, M. E. Resistance and resilience of soil microbiomes under climate change. Ecosphere 15, e70077 (2024).

    Article 

    Google Scholar
     

  • Radujković, D. et al. Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients. FEMS Microbiology Ecol. https://doi.org/10.1093/femsec/fix174 (2018).

    Article 

    Google Scholar
     

  • Cuartero, J., Querejeta, J. I., Prieto, I., Frey, B. & Alguacil, M. M. Warming and rainfall reduction alter soil microbial diversity and co-occurrence networks and enhance pathogenic fungi in dryland soils. Sci. Total Environ. 949, 175006 (2024).

    Article 

    Google Scholar
     

  • Deslippe, J. R., Hartmann, M., Simard, S. W. & Mohn, W. W. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol. Ecol. 82, 303–315 (2012).

    Article 

    Google Scholar
     

  • Junggebauer, A. et al. Temporal variation of soil microarthropods in different forest types and regions of central Europe. Oikos 2024, e10513 (2024).

    Article 

    Google Scholar
     

  • Ganault, P. et al. Soil BON Earthworm — a global initiative on earthworm distribution, traits, and spatiotemporal diversity patterns. Soil Organisms https://doi.org/10.25674/362 (2024)

  • Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

    Article 

    Google Scholar
     

  • Eisenhauer, N., Reich, P. B. & Isbell, F. Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology 93, 2227–2240 (2012).

    Article 

    Google Scholar
     

  • de Vries, F. T. et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. N. Phytol. 224, 132–145 (2019).

    Article 

    Google Scholar
     

  • Bennett, A. E. & Groten, K. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu. Rev. Plant. Biol. 73, 649–672 (2022).

    Article 

    Google Scholar
     

  • Sweeney, C. J., de Vries, F. T., van Dongen, B. E. & Bardgett, R. D. Root traits explain rhizosphere fungal community composition among temperate grassland plant species. N. Phytol. 229, 1492–1507 (2021).

    Article 

    Google Scholar
     

  • Trivedi, P., Batista, B. D., Bazany, K. E. & Singh, B. K. Plant–microbiome interactions under a changing world: responses, consequences and perspectives. N. Phytol. 234, 1951–1959 (2022).

    Article 

    Google Scholar
     

  • Laliberté, E. Below-ground frontiers in trait-based plant ecology. N. Phytol. 213, 1597–1603 (2017).

    Article 

    Google Scholar
     

  • Eisenhauer, N. & Powell, J. R. Plant trait effects on soil organisms and functions. Pedobiologia 65, 1–4 (2017).

    Article 

    Google Scholar
     

  • Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    Article 

    Google Scholar
     

  • Bennett, J. A. & Klironomos, J. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. N. Phytol. 222, 91–96 (2019).

    Article 

    Google Scholar
     

  • De Deyn, G. B. & Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Phil. Trans. R. Soc. B 376, 20200170 (2021).

    Article 

    Google Scholar
     

  • Kaisermann, A., De Vries, F. T., Griffiths, R. I. & Bardgett, R. D. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. N. Phytol. 215, 1413–1424 (2017).

    Article 

    Google Scholar
     

  • Davis, A. G., Huggins, D. R. & Reganold, J. P. Linking soil health and ecological resilience to achieve agricultural sustainability. Front. Ecol. Environ. 21, 131–139 (2023).

    Article 

    Google Scholar
     

  • Davis, J. K., Aguirre, L. A., Barber, N. A., Stevenson, P. C. & Adler, L. S. From plant fungi to bee parasites: mycorrhizae and soil nutrients shape floral chemistry and bee pathogens. Ecology 100, e02801 (2019).

    Article 

    Google Scholar
     

  • Magalhaes, D. M., Lourenção, A. L. & Bento, J. M. S. Beneath the blooms: unearthing the effect of rhizospheric bacteria on floral signals and pollinator preferences. Plant Cell Environ. 47, 782–798 (2024).

    Article 

    Google Scholar
     

  • Barber, N. A. & Soper Gorden, N. L. How do belowground organisms influence plant–pollinator interactions? J. Plant. Ecol. 8, 1–11 (2015).

    Article 

    Google Scholar
     

  • Keeler, A. M., Rose-Person, A. & Rafferty, N. E. From the ground up: building predictions for how climate change will affect belowground mutualisms, floral traits, and bee behavior. Clim. Change Ecol. 1, 100013 (2021).

    Article 

    Google Scholar
     

  • Andras, J. P. et al. Rewilding the small stuff: the effect of ecological restoration on prokaryotic communities of peatland soils. FEMS Microbiol. Ecol. 96, fiaa144 (2020).

    Article 

    Google Scholar
     

  • Lem, A. J. et al. Does revegetation cause soil microbiota recovery? Evidence from revisiting a revegetation chronosequence 6 years after initial sampling. Restor. Ecol. 30, e13635 (2022).

    Article 

    Google Scholar
     

  • Stewart, J., de Lima, N. M., Kingsford, R. & Muñoz-Rojas, M. Soil bacterial biodiversity in drylands is dependent on groundcover under increased temperature. J. Sustain. Agricult. Environ. 3, e70027 (2024).

    Article 

    Google Scholar
     

  • Wu, L. et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 7, 1054–1062 (2022).

    Article 

    Google Scholar
     

  • Ye, C. et al. Revegetation promotes soil microbial network stability in a novel riparian ecosystem. J. Appl. Ecol. 60, 1572–1586 (2023).

    Article 

    Google Scholar
     

  • Tedersoo, L., May, T. W. & Smith, M. E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263 (2010).

    Article 

    Google Scholar
     

  • Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2010).

  • Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90, 2352–2359 (2009).

    Article 

    Google Scholar
     

  • Carteron, A., Vellend, M. & Laliberté, E. Mycorrhizal dominance reduces local tree species diversity across US forests. Nat. Ecol. Evol. 6, 370–374 (2022).

    Article 

    Google Scholar
     

  • Luo, S. et al. Higher productivity in forests with mixed mycorrhizal strategies. Nat. Commun. 14, 1377 (2023).

    Article 

    Google Scholar
     

  • Mathieu, J., Reynolds, J. W., Fragoso, C. & Hadly, E. Multiple invasion routes have led to the pervasive introduction of earthworms in North America. Nat. Ecol. Evol. 8, 489–499 (2024).

    Article 

    Google Scholar
     

  • Ferlian, O. et al. Invasive earthworms shift soil microbial community structure in northern North American forest ecosystems. iScience 27, 108889 (2024).

    Article 

    Google Scholar
     

  • Thouvenot, L. et al. Invasive earthworms can change understory plant community traits and reduce plant functional diversity. iScience 27, 109036 (2024).

    Article 

    Google Scholar
     

  • Thouvenot, L., Ferlian, O., Horn, L., Jochum, M. & Eisenhauer, N. Effects of earthworm invasion on soil properties and plant diversity after two years of field experiment. NeoBiota 94, 31–56 (2024).

    Article 

    Google Scholar
     

  • Jochum, M. et al. Earthworm invasion causes declines across soil fauna size classes and biodiversity facets in northern North American forests. Oikos 130, 766–780 (2021).

    Article 

    Google Scholar
     

  • Scheu, S. The soil food web: structure and perspectives. Eur. J. Soil Biol. 38, 11–20 (2002).

    Article 

    Google Scholar
     

  • Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ’omics in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).

    Article 

    Google Scholar
     

  • Semenov, M. Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and prospects. Biol. Bull. Rev. 11, 40–53 (2021).

    Article 

    Google Scholar
     

  • Mishra, A., Singh, L. & Singh, D. Unboxing the black box — one step forward to understand the soil microbiome: a systematic review. Microb. Ecol. 85, 669–683 (2023).

    Article 

    Google Scholar
     

  • Bastida, F. et al. Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Mol. Ecol. 29, 752–761 (2020).

    Article 

    Google Scholar
     

  • Geisen, S. & Bonkowski, M. Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Appl. Soil Ecol. 123, 328–333 (2018).

    Article 

    Google Scholar
     

  • Porter, T. M. et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 9, 18218 (2019).

    Article 

    Google Scholar
     

  • Young, M. R. & Hebert, P. D. Unearthing soil arthropod diversity through DNA metabarcoding. PeerJ 10, e12845 (2022).

    Article 

    Google Scholar
     

  • Kirse, A., Bourlat, S. J., Langen, K. & Fonseca, V. G. Unearthing the potential of soil eDNA metabarcoding — towards best practice advice for invertebrate biodiversity assessment. Front. Ecol. Evol. 9, 630560 (2021).

    Article 

    Google Scholar
     

  • Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).

    Article 

    Google Scholar
     

  • Zinger, L. et al. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biol. Biochem. 96, 16–19 (2016).

    Article 

    Google Scholar
     

  • Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

    Article 

    Google Scholar
     

  • Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Article 

    Google Scholar
     

  • Coyotzi, S., Pratscher, J., Murrell, J. C. & Neufeld, J. D. Targeted metagenomics of active microbial populations with stable-isotope probing. Curr. Opin. Biotechnol. 41, 1–8 (2016).

    Article 

    Google Scholar
     

  • Macey, M. C. Genome-resolved metagenomics identifies novel active microbes in biogeochemical cycling within methanol-enriched soil. Environ. Microbiol. Rep. 16, e13246 (2024).

    Article 

    Google Scholar
     

  • Ivanova, E., Suleymanov, A., Nikitin, D., Semenov, M. & Abakumov, E. Machine learning-based mapping of acidobacteriota and planctomycetota using 16 S rRNA gene metabarcoding data across soils in Russia. Sci. Rep. 15, 23763 (2025).

    Article 

    Google Scholar
     

  • Thompson, J., Johansen, R., Dunbar, J. & Munsky, B. Machine learning to predict microbial community functions: an analysis of dissolved organic carbon from litter decomposition. PLoS ONE 14, e0215502 (2019).

    Article 

    Google Scholar
     

  • Pyron, R. A. Unsupervised machine learning for species delimitation, integrative taxonomy, and biodiversity conservation. Mol. Phylogenet. Evol. 189, 107939 (2023).

    Article 

    Google Scholar
     

  • Edwin, N. R., Fitzpatrick, A. H., Brennan, F., Abram, F. & O’Sullivan, O. An in-depth evaluation of metagenomic classifiers for soil microbiomes. Environ. Microbiome 19, 19 (2024).

    Article 

    Google Scholar
     

  • Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29, R1036–R1044 (2019).

    Article 

    Google Scholar
     

  • Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).

    Article 

    Google Scholar
     

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).

    Article 

    Google Scholar
     

  • Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).

    Article 

    Google Scholar
     

  • Pereira, M. B., Wallroth, M., Jonsson, V. & Kristiansson, E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genom. 19, 274 (2018).

    Article 

    Google Scholar
     

  • Vyshenska, D. et al. A standardized quantitative analysis strategy for stable isotope probing metagenomics. mSystems 8, e01280-22 (2023).

    Article 

    Google Scholar
     

  • Wang, S. et al. Unveiling the top-down control of soil viruses over microbial communities and soil organic carbon cycling: a review. Clim. Smart Agricult. 1, 100022 (2024).

    Article 

    Google Scholar
     

  • Ahkami, A. H. et al. Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics — review and research perspectives. Soil Biol. Biochem. 189, 109253 (2024).

    Article 

    Google Scholar
     

  • Belaud, E. et al. In situ soil imaging, a tool for monitoring the hourly to monthly temporal dynamics of soil biota. Biol. Fertil. Soils 60, 1055–1071 (2024).

    Article 

    Google Scholar
     

  • Nishida, H., Shimoda, Y., Win, K. T. & Imaizumi-Anraku, H. Rhizosphere frame system enables nondestructive live-imaging of legume–rhizobium interactions in the soil. J. Plant Res. 136, 769–780 (2023).

    Article 

    Google Scholar
     

  • Aleklett, K. et al. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 12, 312–319 (2018).

    Article 

    Google Scholar
     

  • Mafla-Endara, P. M. et al. Microfluidic chips provide visual access to in situ soil ecology. Commun. Biol. 4, 889 (2021).

    Article 

    Google Scholar
     

  • Langel, R. & Dyckmans, J. Combined 13C and 15N isotope analysis on small samples using a near-conventional elemental analyzer/isotope ratio mass spectrometer setup. Rapid Commun. Mass. Spectrom. 28, 1019–1022 (2014).

    Article 

    Google Scholar
     

  • Melody, C., Griffiths, B., Dyckmans, J. & Schmidt, O. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups. PeerJ 4, e2372 (2016).

    Article 

    Google Scholar
     

  • Zeng, Q., Mei, T., Delgado-Baquerizo, M., Wang, M. & Tan, W. Suppressed phosphorus-mineralizing bacteria after three decades of fertilization. Agricult. Ecosyst. Environ. 323, 107679 (2022).

    Article 

    Google Scholar
     

  • Kühn, J., Schweitzer, K. & Ruess, L. Diversity and specificity of lipid patterns in basal soil food web resources. PLoS ONE 14, e0221102 (2019).

    Article 

    Google Scholar
     

  • Whiteman, J. P., Elliott Smith, E. A., Besser, A. C. & Newsome, S. D. A guide to using compound-specific stable isotope analysis to study the fates of molecules in organisms and ecosystems. Diversity 11, 8 (2019).

    Article 

    Google Scholar
     

  • Steffan, S. A. et al. Microbes are trophic analogs of animals. Proc. Natl Acad. Sci. USA 112, 15119–15124 (2015).

    Article 

    Google Scholar
     

  • Steffan, S. A. & Dharampal, P. S. Undead food-webs: integrating microbes into the food-chain. Food Webs 18, e00111 (2019).

    Article 

    Google Scholar
     

  • Land use, land-use change, and forestry: a special report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/land-use-land-use-change-and-forestry/ (2000).

  • Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. 114, 9575–9580 (2017).

    Article 

    Google Scholar
     

  • Zhou, T. et al. Promoting effect of plant diversity on soil microbial functionality is amplified over time. One Earth 7, 2139–2148 (2024).

    Article 

    Google Scholar
     

  • Phillips, H. R. P. et al. Global changes and their environmental stressors have a significant impact on soil biodiversity — a meta-analysis. iScience 27, 110540 (2024).

    Article 

    Google Scholar
     

  • Lüke, C. & Frenzel, P. Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl. Environ. Microbiol. 77, 6305–6309 (2011).

    Article 

    Google Scholar
     

  • Purkhold, U. et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol. 66, 5368–5382 (2000).

    Article 

    Google Scholar
     

  • Van Spanning, R. J. et al. Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem. Nat. Microbiol. 7, 2089–2100 (2022).

    Article 

    Google Scholar
     

  • Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data Discuss. 12, 1561–1623 (2020).

    Article 

    Google Scholar
     

  • Schroth, M. H. et al. Above-and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Manag. 32, 879–889 (2012).

    Article 

    Google Scholar
     

  • Schnyder, E., Bodelier, P. L., Hartmann, M., Henneberger, R. & Niklaus, P. A. Positive diversity–functioning relationships in model communities of methanotrophic bacteria. Ecology 99, 714–723 (2018).

    Article 

    Google Scholar
     

  • Schnyder, E., Bodelier, P. L., Hartmann, M., Henneberger, R. & Niklaus, P. A. Experimental erosion of microbial diversity decreases soil CH4 consumption rates. Ecology 104, e4178 (2023).

    Article 

    Google Scholar
     

  • Schnyder, E., Bodelier, P. L., Hartmann, M., Henneberger, R. & Niklaus, P. A. Do temporal and spatial heterogeneity modulate biodiversity–functioning relationships in communities of methanotrophic bacteria? Soil Biol. Biochem. 185, 109141 (2023).

    Article 

    Google Scholar
     

  • Jiang, O. et al. Loss of microbial diversity increases methane emissions and arsenic release in paddy soils. Sci. Total Environ. 948, 174656 (2024).

    Article 

    Google Scholar
     

  • Yang, X. et al. Loss of microbial diversity does not decrease γ-HCH degradation but increases methanogenesis in flooded paddy soil. Soil Biol. Biochem. 156, 108210 (2021).

    Article 

    Google Scholar
     

  • Kool, D. M., Dolfing, J., Wrage, N. & Van Groenigen, J. W. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol. Biochem. 43, 174–178 (2011).

    Article 

    Google Scholar
     

  • Li, X., Sørensen, P., Olesen, J. E. & Petersen, S. O. Evidence for denitrification as main source of N2O emission from residue-amended soil. Soil Biol. Biochem. 92, 153–160 (2016).

    Article 

    Google Scholar
     

  • Mathieu, O. et al. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers. Environ. Pollut. 144, 933–940 (2006).

    Article 

    Google Scholar
     

  • Shan, J. et al. Beyond denitrification: the role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Glob. Change Biol. 27, 2669–2683 (2021).

    Article 

    Google Scholar
     

  • Wu, B. et al. Synthetic denitrifying communities reveal a positive and dynamic biodiversity–ecosystem functioning relationship during experimental evolution. Microbiol. Spectr. 11, e04528-22 (2023).

    Article 

    Google Scholar
     

  • Griffiths, B. S. & Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37, 112–129 (2013).

    Article 

    Google Scholar
     

  • Domeignoz-Horta, L. A. et al. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 11, 3684 (2020).

    Article 

    Google Scholar
     

  • Thakur, M. P. et al. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob. Change Biol. 21, 4076–4085 (2015).

    Article 

    Google Scholar
     

  • Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc. Natl Acad. Sci. USA 110, 6889–6894 (2013).

    Article 

    Google Scholar
     

  • Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity–ecosystem functioning experiments. Proc. R. Soc. B 287, 20202063 (2020).

    Article 

    Google Scholar
     

  • Thurner, M. A., Caldararu, S., Engel, J., Rammig, A. & Zaehle, S. Modelled forest ecosystem carbon–nitrogen dynamics with integrated mycorrhizal processes under elevated CO2. Biogeosciences 21, 1391–1410 (2024).

    Article 

    Google Scholar
     

  • Pavao-Zuckerman, M. A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 16, 642–649 (2008).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).

    Article 

    Google Scholar
     

  • Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: a meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).

    Article 

    Google Scholar
     

  • Szabó, B. et al. Urbanization decreases species richness, and increases abundance in dry climates whereas decreases in wet climates: a global meta-analysis. Sci. Total Environ. 859, 160145 (2023).

    Article 

    Google Scholar
     

  • Epp Schmidt, D. J. et al. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 1, 0123 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Increasing antimicrobial resistance and potential human bacterial pathogens in an invasive land snail driven by urbanization. Environ. Sci. Technol. 57, 7273–7284 (2023).

    Article 

    Google Scholar
     

  • Guilland, C., Maron, P.-A., Damas, O. & Ranjard, L. Biodiversity of urban soils for sustainable cities. Environ. Chem. Lett. 16, 1267–1282 (2018).

    Article 

    Google Scholar
     

  • Shankar, M. et al. Unearthing the role of soils in urban climate resilience planning. Nat. Sustain. 7, 1374–1376 (2024).

    Article 

    Google Scholar
     

  • Scherzinger, F. et al. Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate. Nat. Commun. 15, 4930 (2024).

    Article 

    Google Scholar
     

  • Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).

    Article 

    Google Scholar
     

  • Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).

    Article 

    Google Scholar
     

  • Wall, D. H. et al. Soil Ecology and Ecosystem Services (Oxford Univ. Press, 2012).

  • Wu, H. et al. Unveiling the crucial role of soil microorganisms in carbon cycling: a review. Sci. Total Environ. 909, 168627 (2024).

    Article 

    Google Scholar
     

  • Chaudhary, S., Sindhu, S. S., Dhanker, R. & Kumari, A. Microbes-mediated sulphur cycling in soil: impact on soil fertility, crop production and environmental sustainability. Microbiol. Res. 271, 127340 (2023).

    Article 

    Google Scholar
     

  • Naitam, M. G. & Kaushik, R. Archaea: an agro-ecological perspective. Curr. Microbiol 78, 2510–2521 (2021).

    Article 

    Google Scholar
     

  • Ferris, H. Contribution of nematodes to the structure and function of the soil food web. J. Nematol. 42, 63–67 (2010).


    Google Scholar
     

  • Jansson, J. K. & Wu, R. Soil viral diversity, ecology and climate change. Nat. Rev. Microbiol. 21, 296–311 (2023).

    Article 

    Google Scholar
     

  • Liang, X. et al. Studying soil viral ecology under an ecosystem services framework. Appl. Soil Ecol. 197, 105339 (2024).

    Article 

    Google Scholar
     

  • Liang, X. et al. Incorporating viruses into soil ecology: a new dimension to understand biogeochemical cycling. Crit. Rev. Environ. Sci. Technol. 54, 117–137 (2024).

    Article 

    Google Scholar
     

  • Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).

    Article 

    Google Scholar
     

  • Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Article 

    Google Scholar
     

  • Romero, F. et al. Soil health is associated with higher primary productivity across Europe. Nat. Ecol. Evol. 8, 1847–1855 (2024).

    Article 

    Google Scholar
     

  • Eisenhauer, N., Hines, J., Maestre, F. T. & Rillig, M. C. Reconsidering functional redundancy in biodiversity research. npj Biodivers. 2, 9 (2023).

    Article 

    Google Scholar
     

  • Ebrahimi, A. & Or, D. Hydration and diffusion processes shape microbial community organization and function in model soil aggregates. Water Resour. Res. 51, 9804–9827 (2015).

    Article 

    Google Scholar
     

  • Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).

    Article 

    Google Scholar
     

  • Fan, K. et al. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7, 143 (2019).

    Article 

    Google Scholar
     

  • Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).

    Article 

    Google Scholar
     

  • Sünnemann, M. et al. Climate change and cropland management compromise soil integrity and multifunctionality. Commun. Earth Environ. 4, 394 (2023).

    Article 

    Google Scholar
     

  • Rillig, M. C. et al. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Change 13, 478–483 (2023).

    Article 

    Google Scholar
     

  • Thakur, M. P. et al. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Change 8, 75–78 (2018).

    Article 

    Google Scholar
     

  • Jurburg, S. D., Blowes, S. A., Shade, A., Eisenhauer, N. & Chase, J. M. Synthesis of recovery patterns in microbial communities across environments. Microbiome 12, 79 (2024).

    Article 

    Google Scholar
     

  • Chomel, M. et al. Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought. Nat. Commun. 13, 6991 (2022).

    Article 

    Google Scholar
     

  • Siebert, J. et al. The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Sci. Rep. 9, 639 (2019).

    Article 

    Google Scholar
     

  • Schmidt, A. et al. The iDiv Ecotron — a flexible research platform for multitrophic biodiversity research. Ecol. Evol. 11, 15174–15190 (2021).

    Article 

    Google Scholar
     

  • Yang, G. et al. Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nat. Commun. 13, 4260 (2022).

    Article 

    Google Scholar
     

  • Dainese, M. et al. Global change experiments in mountain ecosystems: a systematic review. Ecol. Monogr. 94, e1632 (2024).

    Article 

    Google Scholar
     

  • Schädler, M. et al. Investigating the consequences of climate change under different land-use regimes: a novel experimental infrastructure. Ecosphere 10, e02635 (2019).

    Article 

    Google Scholar
     

  • Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).

    Article 

    Google Scholar
     

  • Mason, E. et al. Participatory soil citizen science: an unexploited resource for European soil research. Eur. J. Soil Sci. 75, e13470 (2024).

    Article 

    Google Scholar
     

  • Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).

    Article 

    Google Scholar
     

  • Grover, V. I., Borsdorf, A., Breuste, J., Tiwari, P. C. & Frangetto, F. W. Impact of Global Changes on Mountains: Responses and Adaptation (CRC Press, 2014).

  • Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Article 

    Google Scholar
     

  • König, T., Kaufmann, R. & Scheu, S. The formation of terrestrial food webs in glacier foreland: evidence for the pivotal role of decomposer prey and intraguild predation. Pedobiologia 54, 147–152 (2011).

    Article 

    Google Scholar
     

  • Raso, L. et al. Intraguild predation in pioneer predator communities of alpine glacier forelands. Mol. Ecol. 23, 3744–3754 (2014).

    Article 

    Google Scholar
     

  • Steinwandter, M., Rief, A., Scheu, S., Traugott, M. & Seeber, J. Structural and functional characteristics of high alpine soil macro-invertebrate communities. Eur. J. Soil Biol. 86, 72–80 (2018).

    Article 

    Google Scholar
     

  • Hou, W. et al. Functional traits of soil nematodes define their response to nitrogen fertilization. Funct. Ecol. 37, 1197–1210 (2023).

    Article 

    Google Scholar
     

  • Walker, T. W. et al. Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming. eLife 11, e78555 (2022).

    Article 

    Google Scholar
     

  • Heemsbergen, D. A. et al. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 1019–1020 (2004).

    Article 

    Google Scholar
     

  • Eisenhauer, N., Cesarz, S., Koller, R., Worm, K. & Reich, P. B. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Change Biol. 18, 435–447 (2012).

    Article 

    Google Scholar
     

  • Forey, O. et al. Earthworms do not increase greenhouse gas emissions (CO2 and N2O) in an Ecotron experiment simulating a three-crop rotation system. Sci. Rep. 13, 21920 (2023).

    Article 

    Google Scholar
     

  • Sauze, J. et al. The need for realistic experimental setups in controlled environments: insights from a two-year Ecotron experiment on earthworms’ impact on ecosystem H2O, CO2 and N2O dynamics. In EGU General Assembly 2024 (ed. European Geosciences Union (EGU) Scientific Programme Committee) EGU24-9685 (Göttingen Copernicus, 2024).

  • Roy, J. et al. Ecotrons: powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. Glob. Change Biol. 27, 1387–1407 (2021).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. Ecosystem consequences of invertebrate decline. Curr. Biol. 33, 4538–4547.e5 (2023).

    Article 

    Google Scholar
     

  • Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    Article 

    Google Scholar
     

  • Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).

    Article 

    Google Scholar
     

  • Jin, S. & Chang, H. The trends of blockchain in environmental management research: a bibliometric analysis. Environ. Sci. Pollut. Res. 30, 81707–81724 (2023).

    Article 

    Google Scholar
     

  • Liu, X., Barenji, A. V., Li, Z., Montreuil, B. & Huang, G. Q. Blockchain-based smart tracking and tracing platform for drug supply chain. Computers Ind. Eng. 161, 107669 (2021).

    Article 

    Google Scholar
     

  • Singh, B. K., Trivedi, P., Egidi, E., Macdonald, C. A. & Delgado-Baquerizo, M. Crop microbiome and sustainable agriculture. Nat. Rev. Microbiol. 18, 601–602 (2020).

    Article 

    Google Scholar
     

  • Russell, D. J. et al. Edaphobase 2.0: advanced international data warehouse for collating and using soil biodiversity datasets. Appl. Soil Ecol. 204, 105710 (2024).

    Article 

    Google Scholar
     

  • Pey, B. et al. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl. Ecol. 15, 194–206 (2014).

    Article 

    Google Scholar
     

  • Pey, B. et al. A thesaurus for soil invertebrate trait-based approaches. PLoS ONE 9, e108985 (2014).

    Article 

    Google Scholar
     

  • Lavelle, P. et al. Soil macroinvertebrate communities: a world-wide assessment. Glob. Ecol. Biogeogr. 31, 1261–1276 (2022).

    Article 

    Google Scholar
     

  • Mathieu, J. et al. sOilFauna — a global synthesis effort on the drivers of soil macrofauna communities and functioning. Soil Organisms 94, 111–126 (2022).


    Google Scholar
     

  • Sarneel, J. M. et al. Reading tea leaves worldwide: decoupled drivers of initial litter decomposition mass-loss rate and stabilization. Ecol. Lett. 27, e14415 (2024).

    Article 

    Google Scholar
     

  • Maestre, F. T. & Eisenhauer, N. Recommendations for establishing global collaborative networks in soil ecology. Soil Org. 91, 73 (2019).


    Google Scholar
     

  • Burton, V. J. et al. Land use and soil characteristics affect soil organisms differently from above-ground assemblages. BMC Ecol. Evol. 22, 135 (2022).

    Article 

    Google Scholar
     

  • Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

    Article 

    Google Scholar
     

  • Robinson, J. M., Taylor, A., Fickling, N., Sun, X. & Breed, M. F. Sounds of the underground reflect soil biodiversity dynamics across a grassy woodland restoration chronosequence. J. Appl. Ecol. 61, 2047–2060 (2024).

    Article 

    Google Scholar
     

  • Thakur, M. P. et al. Towards an integrative understanding of soil biodiversity. Biol. Rev. 95, 350–364 (2020).

    Article 

    Google Scholar
     

  • Chu, H., Gao, G.-F., Ma, Y., Fan, K. & Delgado-Baquerizo, M. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems 5, e00803–e00819 (2020).

    Article 

    Google Scholar
     

  • Li, W., Zhang, Y., Mao, W., Wang, C. & Yin, S. Functional potential differences between firmicutes and proteobacteria in response to manure amendment in a reclaimed soil. Can. J. Microbiol. 66, 689–697 (2020).

    Article 

    Google Scholar
     

  • Dawson, W. & Schrama, M. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).

    Article 

    Google Scholar
     

  • Torres, N., Herrera, I., Fajardo, L. & Bustamante, R. O. Meta-analysis of the impact of plant invasions on soil microbial communities. BMC Ecol. Evol. 21, 172 (2021).

    Article 

    Google Scholar
     

  • Waldner, T. & Traugott, M. DNA-based analysis of regurgitates: a noninvasive approach to examine the diet of invertebrate consumers. Mol. Ecol. Resour. 12, 669–675 (2012).

    Article 

    Google Scholar
     

  • Buchkowski, R. W. & Lindo, Z. Stoichiometric and structural uncertainty in soil food web models. Funct. Ecol. 35, 288–300 (2021).

    Article 

    Google Scholar
     

  • Gauzens, B. et al. fluxweb: an R package to easily estimate energy fluxes in food webs. Meth. Ecol. Evol. 10, 270–279 (2018).

    Article 

    Google Scholar
     

  • Sünnemann, M. et al. Sustainable land use strengthens microbial and herbivore controls in soil food webs in current and future climates. Glob. Change Biol. 30, e17554 (2024).

    Article 

    Google Scholar
     

  • Potapov, A. M., Pollierer, M. M., Salmon, S., Šustr, V. & Chen, T. Multidimensional trophic niche revealed by complementary approaches: gut content, digestive enzymes, fatty acids and stable isotopes in collembola. J. Anim. Ecol. 90, 1919–1933 (2021).

    Article 

    Google Scholar
     

  • Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 41, 599–623 (2017).

    Article 

    Google Scholar
     

  • Erktan, A., Or, D. & Scheu, S. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).

    Article 

    Google Scholar
     

  • Baveye, P. C. Ecosystem-scale modelling of soil carbon dynamics: time for a radical shift of perspective? Soil Biol. Biochem. 184, 109112 (2023).

    Article 

    Google Scholar
     

  • Védère, C., Gonod, L. V., Nunan, N. & Chenu, C. Opportunities and limits in imaging microorganisms and their activities in soil microhabitats. Soil Biol. Biochem. 174, 108807 (2022).

    Article 

    Google Scholar
     

  • Capowiez, Y., Gilbert, F., Vallat, A., Poggiale, J.-C. & Bonzom, J.-M. Depth distribution of soil organic matter and burrowing activity of earthworms— mesocosm study using X-ray tomography and luminophores. Biol. Fertil. Soils 57, 337–346 (2021).

    Article 

    Google Scholar
     

  • Capowiez, Y., Bonzom, J.-M., Bottinelli, N. & Gilbert, F. The burrowing and casting dynamics of earthworms are influenced by litter presence as evidenced by repeated scans and a new marker of bioturbation. Appl. Soil Ecol. 202, 105569 (2024).

    Article 

    Google Scholar
     

  • Heintz-Buschart, A. et al. Microbial diversity–ecosystem function relationships across environmental gradients. Res. Ideas Outcomes 6, e52217 (2020).

    Article 

    Google Scholar
     

  • Orgiazzi, A. et al. LUCAS soil biodiversity and LUCAS soil pesticides, new tools for research and policy development. Eur. J. Soil Sci. 73, e13299 (2022).

    Article 

    Google Scholar
     

  • van der Putten, W. H. et al. Soil biodiversity needs policy without borders. Science 379, 32–34 (2023).

    Article 

    Google Scholar
     

  • Beugnon, R., Zeiss, R., Bönisch, E., Phillips, H. & Jochum, M. Communicating soil biodiversity research to kids around the world. Soil Org. 96, 61–68 (2024).


    Google Scholar
     

  • Guerra, C. A. et al. Foundations for a national assessment of soil biodiversity. J. Sustain. Agricult. Environ. 3, e12116 (2024).

    Article 

    Google Scholar
     

  • Wirth, C. et al. Faktencheck Artenvielfalt: Bestandsaufnahme Und Perspektiven Für Den Erhalt Der Biologischen Vielfalt in Deutschland (Oekom Science, 2024).

  • Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    Article 

    Google Scholar
     

  • Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).

    Article 

    Google Scholar
     

  • Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    Article 

    Google Scholar
     

  • Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    Article 

    Google Scholar
     

  • Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article 

    Google Scholar
     

  • Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).

    Article 

    Google Scholar
     

  • Müller, J. et al. Enhancing the structural diversity between forest patches — a concept and real-world experiment to study biodiversity, multifunctionality and forest resilience across spatial scales. Glob. Change Biol. 29, 1437–1450 (2023).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).

    Article 

    Google Scholar
     

  • Jayaramaiah, R. H., Egidi, E., Macdonald, C. A. & Singh, B. K. Linking biodiversity and biotic interactions to ecosystem functioning. J. Sustain. Agricult. Environ. 3, e12119 (2024).

    Article 

    Google Scholar
     

  • Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).

    Article 

    Google Scholar
     

  • Auger, G., Pottier, J., Mathieu, J. & Jabot, F. Space use of invertebrates in terrestrial habitats: phylogenetic, functional and environmental drivers of interspecific variations. Glob. Ecol. Biogeog. 33, e13811 (2024).

    Article 

    Google Scholar
     

  • Bartkowski, B. et al. Potential of the economic valuation of soil-based ecosystem services to inform sustainable soil management and policy. PeerJ 8, e8749 (2020).

    Article 

    Google Scholar
     

  • Darras, K. F. et al. Reducing fertilizer and avoiding herbicides in oil palm plantations — ecological and economic valuations. Front. For. Glob. Change 2, 65 (2019).

    Article 

    Google Scholar
     

  • Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).

    Article 

    Google Scholar
     

  • Paul, C., Kuhn, K., Steinhoff-Knopp, B., Weißhuhn, P. & Helming, K. Towards a standardization of soil-related ecosystem service assessments. Eur. J. Soil Sci. 72, 1543–1558 (2021).

    Article 

    Google Scholar
     

  • Pascual, U. et al. On the value of soil biodiversity and ecosystem services. Ecosyst. Serv. 15, 11–18 (2015).

    Article 

    Google Scholar
     

  • Bartkowski, B. Are diverse ecosystems more valuable? Economic value of biodiversity as result of uncertainty and spatial interactions in ecosystem service provision. Ecosyst. Serv. 24, 50–57 (2017).

    Article 

    Google Scholar
     

  • Plaas, E. et al. Towards valuation of biodiversity in agricultural soils: a case for earthworms. Ecol. Econ. 159, 291–300 (2019).

    Article 

    Google Scholar
     

  • Schon, N. & Dominati, E. Valuing earthworm contribution to ecosystem services delivery. Ecosyst. Serv. 43, 101092 (2020).

    Article 

    Google Scholar
     

  • Sidibé, Y., Foudi, S., Pascual, U. & Termansen, M. Adaptation to climate change in rainfed agriculture in the global south: soil biodiversity as natural insurance. Ecol. Econ. 146, 588–596 (2018).

    Article 

    Google Scholar
     

  • Bartkowski, B. et al. Adoption and potential of agri-environmental schemes in Europe: cross-regional evidence from interviews with farmers. People Nat. 5, 1610–1621 (2023).

    Article 

    Google Scholar
     

  • Stetter, C. & Cronauer, C. Climate and soil conditions shape farmers’ climate change adaptation preferences. Agricult. Econ. 56, 165–187 (2024).

    Article 

    Google Scholar
     

  • Bartkowski, B., Massenberg, J. R. & Lienhoop, N. Investigating preferences for soil-based ecosystem services. Q. Open 2, qoac035 (2022).

    Article 

    Google Scholar
     

  • Franceschinis, C. et al. The effect of social and personal norms on stated preferences for multiple soil functions: evidence from Australia and Italy. Aust. J. Agric. Resour. Econ. 66, 335–362 (2022).

    Article 

    Google Scholar
     

  • Dessart, F. J., Barreiro-Hurlé, J. & Van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review. Eur. Rev. Agric. Econ. 46, 417–471 (2019).

    Article 

    Google Scholar
     

  • Köninger, J., Panagos, P., Jones, A., Briones, M. & Orgiazzi, A. In defence of soil biodiversity: towards an inclusive protection in the European Union. Biol. Conserv. 268, 109475 (2022).

    Article 

    Google Scholar
     

  • Bartkowski, B., Bartke, S., Hagemann, N., Hansjürgens, B. & Schröter-Schlaack, C. Application of the governance disruptions framework to German agricultural soil policy. SOIL 7, 495–509 (2021).

    Article 

    Google Scholar
     

  • Thamo, T. & Pannell, D. J. Challenges in developing effective policy for soil carbon sequestration: perspectives on additionality, leakage, and permanence. Clim. Policy 16, 973–992 (2016).

    Article 

    Google Scholar
     

  • Böcker, T., Britz, W., Möhring, N. & Finger, R. An economic and environmental assessment of a glyphosate ban for the example of maize production. Eur. Rev. Agric. Econ. 47, 371–402 (2020).


    Google Scholar