• Wilkerson RC, Linton YM, Strickman D. Mosquitoes of the world. Baltimore: Johns Hopkins University Press; 2021.

    Book 

    Google Scholar
     

  • Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12:435–47. https://doi.org/10.1089/vbz.2011.0814.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrić D, Bellini R, Scholte EJ, Rakotoarivony LM, Schaffner F. Monitoring population and environmental parameters of invasive mosquito species in Europe. Parasit Vectors. 2014;7:187. https://doi.org/10.1186/1756-3305-7-187.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elbers ARW, Koenraadt CJM, Meiswinkel R. Mosquitoes and Culicoides biting midges: vector range and the influence of climate change. Rev Sci Tech Off Int Epiz. 2015;34:123–37. https://doi.org/10.20506/rst.34.1.2349.

    Article 
    CAS 

    Google Scholar
     

  • Mwingira V, Mboera LEG, Dicke M, Takken W. Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review. J Vector Ecol. 2020;45:155–79. https://doi.org/10.1111/jvec.12387.

    Article 
    PubMed 

    Google Scholar
     

  • Renault D, Derocles SAP, Haubrock P, Simard F, Cuthbert RN, Valiente-Moro C. Biological, ecological and trophic features of invasive mosquitoes and other hematophagous arthropods: what makes them successful? Biol Invasions. 2024;26:33–55. https://doi.org/10.1007/s10530-023-03158-5.

    Article 

    Google Scholar
     

  • Fonseca DM, Widdel AK, Hutchinson M, Spichiger SE, Kramer LD. Fine-scale spatial and temporal population genetics of Aedes japonicus, a new US mosquito, reveal multiple introductions. Mol Ecol. 2010;19:1559–72. https://doi.org/10.1111/j.1365-294X.2010.04576.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urdaneta-Marquez L, Failloux AB. Population genetic structure of Aedes aegypti, the principal vector of dengue viruses. Infect Genet Evol. 2011;11:253–61. https://doi.org/10.1016/j.meegid.2010.11.020.

    Article 
    PubMed 

    Google Scholar
     

  • Janssen N, Werner D, Kampen H. Population genetics of the invasive Asian bush mosquito Aedes japonicus (Diptera, Culicidae) in Germany–a re-evaluation in a time period of separate populations merging. Parasitol Res. 2019;118:2475–84. https://doi.org/10.1007/s00436-019-06376-w.

    Article 
    PubMed 

    Google Scholar
     

  • Li SP, Jiang F, Lu H, Kang X, Wang YH, Zou Z, et al. Mosquito diversity and population genetic structure of six mosquito species from Hainan Island. Front Genet. 2020;11:602863. https://doi.org/10.3389/fgene.2020.602863.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin J, Jung J. Comparative population genetics of the invasive mosquito Aedes albopictus and the native mosquito Aedes flavopictus in the Korean peninsula. Parasit Vectors. 2021;14:377. https://doi.org/10.1186/s13071-021-04873-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Askari F, Paksa A, Shahabi S, Saeedi S, Sofizadeh A, Vahedi M, et al. Population genetic structure and phylogenetic analysis of Anopheles hyrcanus (Diptera: Culicidae) inferred from DNA sequences of nuclear ITS2 and the mitochondrial COI gene in the northern part of Iran. BMC Infect Dis. 2024;24:724. https://doi.org/10.1186/s12879-024-09626-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atherton W, Ambrose L, Wisdom J, Lessard BD, Kurucz N, Webb CE, et al. Nuclear and mitochondrial population genetics of the Australasian arbovirus vector Culex annulirostris (Skuse) reveals strong geographic structure and cryptic species. Parasit Vectors. 2024;17:501. https://doi.org/10.1186/s13071-024-06551-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bursali F, Simsek F. Population Genetics of Culex tritaeniorhynchus (Diptera: Culicidae) in Türkiye. Acta Parasit. 2024;69:1157–71. https://doi.org/10.1007/s11686-024-00844-9.

    Article 
    CAS 

    Google Scholar
     

  • Dong H, Yuan H, Yang X, Shan W, Zhou Q, Tao F, et al. Phylogenetic analysis of some species of the Anopheles hyrcanus group (Diptera: Culicidae) in China based on complete mitochondrial genomes. Genes. 2023;14:1453. https://doi.org/10.3390/genes14071453.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Wang H, Du J, Wang Y, Zang C, Cheng P, et al. Population genetic structure of Culex tritaeniorhynchus in different types of climatic zones in China. BMC Genomics. 2024;25:673. https://doi.org/10.1186/s12864-024-10589-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Zhang C, Wu L, Luo C, Guo X, Yang R, et al. Population genetic structure and evolutionary genetics of Anopheles sinensis based on knockdown resistance (kdr) mutations and mtDNA-COII gene in China-Laos, Thailand-Laos, and Cambodia-Laos borders. Parasit Vectors. 2022;15:229. https://doi.org/10.1186/s13071-022-05366-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zouré AA, Noël G, Sombié A, Somda Z, Badolo A, Francis F. Genetic analysis and population structure of the Anopheles gambiae complex from different ecological zones of Burkina Faso. Infect Genet Evol. 2020;81:104261. https://doi.org/10.1016/j.meegid.2020.104261.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi KS, Koekemoer LL, Coetzee M. Population genetic structure of the major malaria vector Anopheles funestus s.s. and allied species in southern Africa. Parasit Vectors. 2012;5:283. https://doi.org/10.1186/1756-3305-5-283.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sunil S, Singh OP, Nanda N, Raghavendra K, Niranjan Reddy BP, Subbarao SK. Analysis of population genetic structure of Indian Anopheles culicifacies species A using microsatellite markers. Parasit Vectors. 2013;6:166. https://doi.org/10.1186/1756-3305-6-166.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilke ABB, Oliveira Vidal P, Suesdek L, Toledo MM. Population genetics of neotropical Culex quinquefasciatus (Diptera: Culicidae). Parasit Vectors. 2014;7:468. https://doi.org/10.1186/s13071-014-0468-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bunmee K, Thaenkham U, Saralamba N, Ponlawat A, Zhong DB, Cui LW, et al. Population genetic structure of the malaria vector Anopheles minimus in Thailand based on mitochondrial DNA markers. Parasit Vectors. 2021;14:496. https://doi.org/10.1186/s13071-021-04998-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao J, Zhang HD, Guo XX, Xing D, Dong YD, Lan CJ, et al. Dispersal patterns and population genetic structure of Aedes albopictus (Diptera: Culicidae) in three different climatic regions of China. Parasit Vectors. 2021;14:12. https://doi.org/10.1186/s13071-020-04521-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fonseca DM, Smith JL, Wilkerson RC, Fleischer RC. Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Am J Trop Med Hyg. 2006;74:284–9.

    Article 
    PubMed 

    Google Scholar
     

  • Szalanski AL, Owens CB, Lewter JA, Broce AB. Genetic structure of Aedes vexans (Diptera: Culicidae) populations from central United States based on mitochondrial ND5 sequences. Ann Entomol Soc Am. 2006;99:157–63. https://doi.org/10.1603/0013-8746(2006)099[0157:GSOAVD]2.0.CO;2.

    Article 
    CAS 

    Google Scholar
     

  • Hasan AU, Suguri S, Ahmed SMU, Fujimoto C, Harada M, Rahman SM, et al. Molecular phylogeography of Culex quinquefasciatus mosquitoes in central Bangladesh. Acta Trop. 2009;112:106–14. https://doi.org/10.1016/j.actatropica.2009.07.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morais SA, de Almeida F, Suesdek L, Marrelli MT. Low genetic diversity in Wolbachia-infected Culex quinquefasciatus (Diptera: Culicidae) from Brazil and Argentina. Rev Inst Med Trop Sao Paulo. 2012;54:325–9.

    Article 
    PubMed 

    Google Scholar
     

  • Low VL, Lim PE, Chen CD, Lim YAL, Tan TK, Norma-Rashid Y, et al. Mitochondrial DNA analyses reveal low genetic diversity in Culex quinquefasciatus from residential areas in Malaysia. Med Vet Entomol. 2014;28:157–68. https://doi.org/10.1111/mve.12022.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherpa S, Rioux D, Goindin D, Fouque F, François O, Després L. At the origin of a worldwide invasion: unraveling the genetic makeup of the Caribbean bridgehead populations of the dengue vector Aedes aegypti. Genome Biol Evol. 2017;10:56–71. https://doi.org/10.1093/gbe/evx267.

    Article 
    PubMed Central 

    Google Scholar
     

  • Sherpa S, Rioux D, Pougnet-Lagarde C, Després L. Genetic diversity and distribution differ between long-established and recently introduced populations in the invasive mosquito Aedes albopictus. Infect Genet Evol. 2018;58:145–56. https://doi.org/10.1016/j.meegid.2017.12.018.

    Article 
    PubMed 

    Google Scholar
     

  • Hasan AU, Suguri S, Fujimoto C, Itaki RL, Harada M, Kawabata M, et al. Genetic diversity in two sibling species of the Anopheles punctulatus group of mosquitoes on Guadalcanal in the Solomon Islands. BMC Evol Biol. 2008;8:318. https://doi.org/10.1186/1471-2148-8-318.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bataille A, Cunningham AA, Cedeño V, Patiño L, Constantinou A, Kramer LD, et al. Natural colonization and adaptation of a mosquito species in Galápagos and its implications for disease threats to endemic wildlife. Proc Natl Acad Sci U S A. 2009;106:10230–5. https://doi.org/10.1073/pnas.0901308106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panda D, Barik TK. Molecular characterization and genetic divergence of seven Culex mosquito (Diptera: Culicidae) species using Mt COI gene from Odisha state. India J Basic Appl Zool. 2022;83:41. https://doi.org/10.1186/s41936-022-00305-7.

    Article 
    CAS 

    Google Scholar
     

  • Service MW. Mosquito (Diptera: Culicidae) dispersal: the long and short of it. J Med Entomol. 1997;34:579–88.

    Article 
    PubMed 

    Google Scholar
     

  • Verdonschot PFM, Besse-Lototskaya AA. Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica. 2014;45:69–79. https://doi.org/10.1016/j.limno.2013.11.002.

    Article 

    Google Scholar
     

  • Debrot AO, Henkens RJHG & Verweij PJFM. Staat van de natuur van Caribisch Nederland 2017: een eerste beoordeling van de staat (van instandhouding), bedreigingen en managementimplicaties van habitats en soorten in Caribisch Nederland. Rapport Co86/17. Wageningen: Wageningen Marine Research; 2018.

  • Van der Kuyp E. Mosquitoes of the Netherlands Antilles and their hygienic importance. Stud Fauna Curaçao. 1954;5:37–114.


    Google Scholar
     

  • Martinez C, Goddard L, Kushnir Y, Ting MF. Seasonal climatology and dynamical mechanisms of rainfall in the Caribbean. Clim Dynam. 2019;53:825–46. https://doi.org/10.1007/s00382-019-04616-4.

    Article 

    Google Scholar
     

  • KNMI: hour data Caribbean area; 2023. https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens_Caribisch_gebied. Accessed 12 Oct 2023.

  • NU.CW; 2022. https://nu.cw/2022/11/03/nog-meer-regen-voor-de-abc-eilanden/. Accessed 15 Nov 2022.

  • Johnston E, Weinstein P, Slaney D, Flies AS, Fricker S, Williams C. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance. J Vector Ecol. 2014;39:48–55. https://doi.org/10.1111/j.1948-7134.2014.12069.x.

    Article 
    PubMed 

    Google Scholar
     

  • European Centre for Disease Prevention and Control; European Food Safety Authority. Field sampling methods for mosquitoes, sandflies, biting midges and ticks: VectorNet project 2014–2018. Stockholm and Parma: ECDC and EFSA; 2018.

  • Lane J. Neotropical Culicidae. Vol. I and II. São Paulo: University of São Paulo; 1953.

  • Pratt HD. Key to the Culicidae of Puerto Rico. 1969.

  • Belkin JN, Heinemann SJ, Page WA. The Culicidae of Jamaica (Mosquito Studies. XXI). Contrib Am Entomol Inst. 1970;6:1–458.


    Google Scholar
     

  • Darsie RF, Scott Taylor D, Prusak ZA, Verna TN. Checklist of the mosquitoes of the Bahamas with three additions to its fauna and keys to the adult females and fourth instars. J Am Mosq Control Assoc. 2010;26:127–34. https://doi.org/10.2987/09-5982.1.

    Article 
    PubMed 

    Google Scholar
     

  • Burkett-Cadena ND. Mosquitoes of the Southeastern United States. Tuscaloosa: The University of Alabama Press; 2013.


    Google Scholar
     

  • Van der Beek JG, Dijkstra KDB, Van der Hoorn BB, Boerlijst SP, Busscher L, Kok ML, et al. Taxonomy, ecology and distribution of the mosquitoes (Diptera: Culicidae) of the Dutch Leeward Islands, with a key to the adults and fourth instar larvae. Contrib Zool. 2020;89:373–92. https://doi.org/10.1163/18759866-bja10005.

    Article 

    Google Scholar
     

  • Arnell JH. Mosquito studies (Diptera, Culicidae) XXXII: a revision of the genus Haemagogus. Contrib Am Entomol Inst. 1973;10:1–174.


    Google Scholar
     

  • Belkin JN. The mosquitoes of the South Pacific (Diptera: Culicidae). California: University of California Press; 1962.


    Google Scholar
     

  • Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti: a review. Mem Inst Oswaldo Cruz. 2013;108:11–7. https://doi.org/10.1590/0074-0276130395.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oshaghi MA. mtDNA inheritance in the mosquitoes of Anopheles stephensii. Mitochondrion. 2005;5:266–71. https://doi.org/10.1016/j.mito.2005.05.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore WS. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution. 1995;49:718–26.

    PubMed 

    Google Scholar
     

  • Rubinoff D, Cameron S, Will K. A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J Hered. 2006;97:581–94. https://doi.org/10.1093/jhered/esl036.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zink RM, Barrowclough GF. Mitochondrial DNA under siege in avian phylogeography. Mol Ecol. 2008;17:2107–21. https://doi.org/10.1111/j.1365-294X.2008.03737.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trimbos KB, Doorenweerd C, Kraaijeveld K, Musters CJM, Groen NM, de Knijff P, et al. Patterns in nuclear and mitochondrial DNA reveal historical and recent isolation in the Black-Tailed Godwit (Limosa limosa). PLoS ONE. 2014;9:e83949. https://doi.org/10.1371/journal.pone.0083949.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan A, Chiang LP, Hapuarachchi HC, Tan CH, Pang SC, Lee R, et al. DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasit Vectors. 2014;7:569. https://doi.org/10.1186/s13071-014-0569-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernández-Triana LM, Brugman VA, Pramual P, Barrero E, Nikilova NI, Ruiz-Arrondo I, et al. Genetic diversity and population structure of Culex modestus across Europe: does recent appearance in the United Kingdom reveal a tendency for geographical spread? Med Vet Entomol. 2014. https://doi.org/10.1111/mve.12412.

    Article 

    Google Scholar
     

  • Le Goff G, Boussès P, Julienne S, Brengues C, Rahola N, Rocamora G, et al. The mosquitoes (Diptera: Culicidae) of Seychelles: taxonomy, ecology, vectorial importance, and identification keys. Parasit Vectors. 2012;5:207. https://doi.org/10.1186/1756-3305-5-207.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knobloch EC & Schmidt RC: Non-destructively barcoding hundreds of freshwater macroinvertebrates with a MinION; 2022. https://www.protocols.io/view/non-destructively-barcoding-hundreds-of-freshwater-cbh6sj9e.html. Accessed 1 Jan 2023.

  • Bergsten J, Brilmyer G, Crampton-Platt A, Nilsson AN. Sympatry and colour variation disguised well-differentiated sister species: Suphrodytes revised with integrative taxonomy including 5 kbp of housekeeping genes (Coleoptera: Dytiscidae). DNA Barcodes. 2012;1:1–18. https://doi.org/10.2478/dna-2012-0001.

    Article 

    Google Scholar
     

  • Cristiano MP, Fernandes-Salomão TM, Yotoko KSC. Nuclear mitochondrial DNA: an Achilles’ heel of molecular systematics, phylogenetics, and phylogeographic studies of stingless bees. Apidologie. 2012;43:527–38. https://doi.org/10.1007/s13592-012-0122-4.

    Article 

    Google Scholar
     

  • Wang YH, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39:1348–65. https://doi.org/10.1038/s41587-021-01108-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okonechnikov K, Golosova O, Fursov M. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7. https://doi.org/10.1093/bioinformatics/bts091.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. https://doi.org/10.1186/1471-2105-5-113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leigh JW, Bryant D & Steel M. popart documentation: Data Input. Otago, University of Otago; 2023. https://popart.maths.otago.ac.nz/documentation/. Accessed 12 May 2023.

  • BOLD. BOLD: The Barcode of Life Data System. Mol Ecol Notes. 2007. www.boldsystems.org

  • Leigh JW, Bryant D. popart: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6. https://doi.org/10.1111/2041-210X.12410.

    Article 

    Google Scholar
     

  • Bandelt H, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clement M, Snell Q, Walke P, Posada D, Crandall K. TCS: estimating gene genealogies. Proc. 2002;2:184.


    Google Scholar
     

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302. https://doi.org/10.1093/molbev/msx248.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:915–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma M, Fomda BA, Mazta S, Sehgal R, Singh BB, Malla N. Genetic diversity and population genetic structure analysis of Echinococcus granulosus sensu stricto complex based on mitochondrial DNA signature. PLoS ONE. 2013;8:e82904. https://doi.org/10.1371/journal.pone.0082904.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-Tree 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. https://doi.org/10.1093/molbev/msaa015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy S, Minh BQ, Wong TFK, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. https://doi.org/10.1038/nmeth.4285.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2017;35:518–22. https://doi.org/10.1093/molbev/msx281.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Yu GC, Smith DK, Zhu HC, Guan Y, Lam TTY. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36. https://doi.org/10.1111/2041-210x.12628.

    Article 

    Google Scholar
     

  • Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23. https://doi.org/10.1111/j.2041-210X.2011.00169.x.

    Article 

    Google Scholar
     

  • Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD, Chiappero M, et al. Global genetic diversity of Aedes aegypti. Mol Ecol. 2016;25:5377–95. https://doi.org/10.1111/mec.13866.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valdivalagan C, Karthika P, Murugan K, Panneerselvam C, Del Serrone P, Benelli G. Exploring genetic variation in haplotypes of the filariasis vector Culex quinquefasciatus (Diptera: Culicidae) through DNA barcoding. Acta Trop. 2017;169:43–50. https://doi.org/10.1016/j.actatropica.2017.01.020.

    Article 
    CAS 

    Google Scholar
     

  • Birader K. Genetic diversity and the adaptation of species to changing environments. J Biodivers Endanger Species. 2023;11:474.


    Google Scholar
     

  • Provost MW. The dispersal of Aedes taeniorhynchus. 1. Preliminary studies. Mosq News. 1952;12:174–90.


    Google Scholar
     

  • Horsfall RB. Mosquitoes: their bionomics and relation to disease. New York: The Ronald Press Company; 1955.


    Google Scholar
     

  • Becker N, Petrić D, Zgomba M, Boase C, Madon MB, Dahl C, et al. Biology of mosquitoes. Cham: Springer Nature; 2020.

    Book 

    Google Scholar
     

  • Laurance WF. Beyond island biogeography theory: understanding habitat fragmentation in the real. Princeton: Princeton University Press; 2010.


    Google Scholar
     

  • Liu H, Beckenbach AT. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol Phylogenet Evol. 1992;1:41–52. https://doi.org/10.1016/1055-7903(92)90034-e.

    Article 
    CAS 
    PubMed 

    Google Scholar