Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).
An, R. et al. Non-enzymatic depurination of nucleic acids: factors and mechanisms. PLoS ONE 9, e115950 (2014).
Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).
Flajnik, M. Comparative analyses of immunoglobulin genes: surprises and portents. Nat. Rev. Immunol. 2, 688–698 (2002).
McGinn, J. & Marraffini, L. Molecular mechanisms of CRISPR–Cas spacer acquisition. Nat. Rev. Microbiol. 17, 7–12 (2018).
Hoeijmakers, J. H., Frasch, A. C., Bernards, A., Borst, P. & Cross, G. A. Novel expression-linked copies of the genes for variant surface antigens in trypanosomes. Nature 284, 78–80 (1980).
Beerman, S. Chromatin-Diminution bei Copepoden. Chromosoma 10, 504–514 (1959).
Selker, E. U. & Garrett, P. W. DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc. Natl Acad. Sci. USA 85, 6870–6874 (1988).
Rees, A. R. Understanding the human antibody repertoire. MAbs 12, 1729683 (2020).
Soto, C. S. et al. High frequency of shared clonotypes in human B cell receptor repertoires. Nature 566, 398–402 (2019).
Boveri, T. Uber Differenzierung der Zellkerne wahrend der Furchung des Eies von Ascaris megalocephala. Anatomischer Anz. 2, 688–693 (1887).
Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).
Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).
Cumbers, S. J. et al. Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nat. Biotechnol. 20, 1129–1134 (2002).
Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).
Bowman, E. J., Kendle, R. & Bowman, B. J. Disruption of vma-1, the gene encoding the catalytic subunit of the vacuolar H+-ATPase, causes severe morphological changes in Neurospora crassa. J. Biol. Chem. 275, 167–176 (2000).
Hayashi, A. & Mochizuki, K. Targeted gene disruption by ectopic induction of DNA elimination in Tetrahymena. Genetics 201, 55–64 (2015).
Heng, Y. C., Kitano, S., Susanto, A. V., Foo, J. L. & Chang, M. W. Tunable cell differentiation via reprogrammed mating-type switching. Nat. Commun. 15, 8163 (2024).
Singh, P. & Bankhead, T. Breaking a barrier: in trans vlsE recombination and genetic manipulation of the native vlsE gene of the Lyme disease pathogen. PLoS Pathog. 21, e1012871 (2025).
Xie, Z. X. et al. Rapid and efficient CRISPR/Cas9-based mating-type switching of Saccharomyces cerevisiae. G3 8, 173–183 (2018).
Lee, S.-C. et al. Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering. Proc. Natl Acad. Sci. USA 109, 3299–3304 (2012).
Manders, F., van Boxtel, R. & Middelkamp, S. The dynamics of somatic mutagenesis during life in humans. Front. Aging 2, 802407 (2021).
Dedukh, D. & Krasikova, A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol. Rev. Camb. Philos. Soc. 97, 195–216 (2022).
Oren, M. et al. Individual sea urchin coelomocytes undergo somatic immune gene diversification. Front. Immunol. 10, 1298 (2019).
Barela Hudgell, M. A., Momtaz, F., Jafri, A., Alekseyev, M. A. & Smith, L. C. Local genomic instability of the SpTransformer gene family in the purple sea urchin inferred from BAC insert deletions. Genes 15, 222 (2024).
Suberbielle, E. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci. 16, 613–621 (2013).
Caldecott, K. W., Ward, M. E. & Nussenzweig, A. The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nat. Genet. 54, 115–120 (2022).
Magee, A. M. et al. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res. 20, 1700–1710 (2010).
Timoshevskiy, V. A., Timoshevskaya, N. Y. & Smith, J. J. Germline-specific repetitive elements in programmatically eliminated chromosomes of the sea lamprey (Petromyzon marinus). Genes 10, 832 (2019).
Smith, J. J., Antonacci, F., Eichler, E. E. & Amemiya, C. T. Programmed loss of millions of base pairs from a vertebrate genome. Proc. Natl Acad. Sci. USA 106, 11212–11217 (2009).
Zhang, S.-M., Adema, C. M., Kepler, T. B. & Loker, E. S. Diversification of Ig superfamily genes in an invertebrate. Science 305, 251–254 (2004).
Cullis, C. A. Mechanisms and control of rapid genomic changes in flax. Ann. Bot. 95, 201–206 (2005).
Nelson, J. O., Kumon, T. & Yamashita, Y. M. rDNA magnification is a unique feature of germline stem cells. Proc. Natl Acad. Sci. USA 120, e2314440120 (2023).
Wang, J. et al. Comparative genome analysis of programmed DNA elimination in nematodes. Genome Res. 27, 2001–2014 (2017).
Gonzalez de la Rosa, P. M. et al. A telomere-to-telomere assembly of Oscheius tipulae and the evolution of rhabditid nematode chromosomes. G3 11, jkaa020 (2021).
Rey, C., Launay, C., Wenger, E. & Delattre, M. Programmed DNA elimination in Mesorhabditis nematodes. Curr. Biol. 33, 3711–3721 (2023).
Nemetschke, L., Eberhardt, A. G., Hertzberg, H. & Streit, A. Genetics, chromatin diminution, and sex chromosome evolution in the parasitic nematode genus Strongyloides. Curr. Biol. 20, 1687–1696 (2010).
Estrem, B. & Wang, J. Programmed DNA elimination in the parasitic nematode Ascaris. PLoS Pathog. 19, e1011087 (2023).
Sun, C., Wyngaard, G., Walton, D. B., Wichman, H. A. & Mueller, R. L. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development. BMC Genomics 15, 186 (2014).
Kojima, N. F. et al. Whole chromosome elimination and chromosome terminus elimination both contribute to somatic differentiation in Taiwanese hagfish Paramyxine sheni. Chromosome Res. 18, 383–400 (2010).
Nakai, Y., Kubota, S. & Kohno, S. Chromatin diminution and chromosome elimination in four Japanese hagfish species. Cytogenet. Cell Genet. 56, 196–198 (1991).
Ammermann, D. Morphology and development of the macronuclei of the ciliates Stylonychia mytilus and Euplotes aediculatus. Chromosoma 33, 209–238 (1971).
Prescott, D. M. & Murti, K. G. Chromosome structure in ciliated protozoans. Cold Spring Harb. Symp. Quant. Biol. 38, 609–618 (1974).
Swart, E. C. et al. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol. 11, e1001473 (2013).
Chen, X. et al. The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158, 1187–1198 (2014).
Hozumi, N. & Tonegawa, S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl Acad. Sci. USA 73, 3628–3632 (1976).
Chien, Y. H., Gascoigne, N. R., Kavaler, J., Lee, N. E. & Davis, M. M. Somatic recombination in a murine T-cell receptor gene. Nature 309, 322–326 (1984).
Watson, C. T. et al. Complete haplotype sequence of the human immunoglobulin heavy-chain variable, diversity, and joining genes and characterization of allelic and copy-number variation. Am. J. Hum. Genet. 92, 530–546 (2013).
Baudry, C. et al. PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev. 23, 2478–2483 (2009).
Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).
Liu, C., Zhang, Y., Liu, C. C. & Schatz, D. G. Structural insights into the evolution of the RAG recombinase. Nat. Rev. Immunol. 22, 353–370 (2022).
Nowacki, M. et al. A functional role for transposases in a large eukaryotic genome. Science 324, 935–938 (2009).
Cheng, C.-Y., Vogt, A., Mochizuki, K. & Yao, M.-C. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol. Biol. Cell 21, 1753–1762 (2010).
Dockendorff, T. C. et al. The nematode Oscheius tipulae as a genetic model for programmed DNA elimination. Curr. Biol. 32, 5083–5098 (2022).
Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 110, 689–699 (2002).
Fang, W., Wang, X., Bracht, J. R., Nowacki, M. & Landweber, L. F. Piwi-interacting RNAs protect DNA against loss during Oxytricha genome rearrangement. Cell 151, 1243–1255 (2012).
Kang, Y. et al. Differential chromosomal localization of centromeric histone CENP-A contributes to nematode programmed DNA elimination. Cell Rep. 16, 2308–2316 (2016).
Kapusta, A. et al. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining. PLoS Genet. 7, e1002049 (2011).
Grawunder, U. et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388, 492–495 (1997).
Lin, I.-T., Chao, J.-L. & Yao, M.-C. An essential role for the DNA breakage-repair protein Ku80 in programmed DNA rearrangements in Tetrahymena thermophila. Mol. Biol. Cell 23, 2213–2225 (2012).
Han, L. & Yu, K. Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells. J. Exp. Med. 205, 2745–2753 (2008).
Yu, K. & Lieber, M. R. Current insights into the mechanism of mammalian immunoglobulin class switch recombination. Crit. Rev. Biochem. Mol. Biol. 54, 333–351 (2019).
Bétermier, M., Klobutcher, L. A. & Orias, E. Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends. Microbiol. Mol. Biol. Rev. 87, e0018422 (2023).
Charmant, O. et al. The PIWI-interacting protein Gtsf1 controls the selective degradation of small RNAs in Paramecium. Nucleic Acids Res. 53, gkae1055 (2025).
Nowacki, M. et al. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451, 153–158 (2008).
Sellis, D. et al. Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLoS Biol. 19, e3001309 (2021).
Stavnezer, J., Guikema, J. E. J. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008).
Gellert, M. Recent advances in understanding V(D)J recombination. Adv. Immunol. 64, 39–64 (1997).
Fan, Q. & Yao, M. New telomere formation coupled with site-specific chromosome breakage in Tetrahymena thermophila. Mol. Cell. Biol. 16, 1267–1274 (1996).
Estrem, B., Davis, R. E. & Wang, J. End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. Nucleic Acids Res. 52, 8913–8929 (2024).
Schutt, E., Hołyńska, M. & Wyngaard, G. A. Genome size in cyclopoid copepods (Copepoda: Cyclopoida): chromatin diminution as a hypothesized mechanism of evolutionary constraint. J. Crustac. Biol. 41, ruab043 (2021).
Teng, G. & Papavasiliou, F. N. Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 41, 107–120 (2007).
Vink, C., Rudenko, G. & Seifert, H. S. Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol. Rev. 36, 917–948 (2012).
Haas, R. & Meyer, T. F. The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44, 107–115 (1986).
Centurion-Lara, A. et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection: tprK gene conversion. Mol. Microbiol. 52, 1579–1596 (2004).
Zhang, J. R., Hardham, J. M., Barbour, A. G. & Norris, S. J. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89, 275–285 (1997).
Faria, J., Briggs, E. M., Black, J. A. & McCulloch, R. Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr. Opin. Microbiol. 70, 102209 (2022).
Keneskhanova, Z. et al. Genomic determinants of antigen expression hierarchy in African trypanosomes. Nature https://doi.org/10.1038/s41586-025-08720-w (2025).
Wada, M. & Nakamura, Y. Antigenic variation by telomeric recombination of major-surface-glycoprotein genes of Pneumocystis carinii. J. Eukaryot. Microbiol. 43, 8S (1996).
Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48, 379–388 (1987).
Thompson, C. B. & Neiman, P. E. Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell 48, 369–378 (1987).
Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).
Nagawa, F. et al. Antigen-receptor genes of the agnathan lamprey are assembled by a process involving copy choice. Nat. Immunol. 8, 206–213 (2007).
Sutoh, Y. & Kasahara, M. The immune system of jawless vertebrates: insights into the prototype of the adaptive immune system. Immunogenetics 73, 5–16 (2021).
Laurent, M. et al. Evolution of a trypanosome surface antigen gene repertoire linked to non-duplicative gene activation. Nature 308, 370–373 (1984).
Cross, G. A. M., Kim, H.-S. & Wickstead, B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol. Biochem. Parasitol. 195, 59–73 (2014).
Hicks, J. B. & Herskowitz, I. Interconversion of yeast mating types II. Restoration of mating ability to sterile mutants in homothallic and heterothallic strains. Genetics 85, 373–393 (1977).
Haber, J. E. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191, 33–64 (2012).
Oshima, Y. & Takano, I. Mating types in Saccharomyces: their convertibility and homothallism. Genetics 67, 327–335 (1971).
Egel, R. & Gutz, H. Gene activation by copy transposition in mating-type switching of a homothallic fission yeast. Curr. Genet. 3, 5–12 (1981).
Arcangioli, B. & Gangloff, S. The fission yeast mating-type switching motto: ‘one-for-two’ and ‘two-for-one’. Microbiol. Mol. Biol. Rev. 87, e0000821 (2023).
Hicks, W. M., Kim, M. & Haber, J. E. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329, 82–85 (2010).
Hill, S. A. & Davies, J. K. Pilin gene variation in Neisseria gonorrhoeae: reassessing the old paradigms. FEMS Microbiol. Rev. 33, 521–530 (2009).
Cook, A. J. L. et al. DNA-dependent protein kinase inhibits AID-induced antibody gene conversion. PLoS Biol. 5, e80 (2007).
Kohzaki, M. et al. DNA polymerases ν and θ are required for efficient immunoglobulin V gene diversification in chicken. J. Cell Biol. 189, 1117–1127 (2010).
Sonawala, U. et al. A gene with a thousand alleles: the hyper-variable effectors of plant-parasitic nematodes. Cell Genom. 4, 100580 (2024).
Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR–Cas immunity. BMC Biol. 12, 36 (2014).
Trzilova, D. & Tamayo, R. Site-specific recombination — how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations. Trends Genet. 37, 59–72 (2021).
Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).
Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663 (2005).
Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).
Wright, A. V. et al. Structures of the CRISPR genome integration complex. Science 357, 1113–1118 (2017).
Nuñez, J. K., Bai, L., Harrington, L. B., Hinder, T. L. & Doudna, J. A. CRISPR immunological memory requires a host factor for specificity. Mol. Cell 62, 824–833 (2016).
Sekulovic, O. et al. Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genet. 14, e1007332 (2018).
Chanin, R. B. et al. Intragenic DNA inversions expand bacterial coding capacity. Nature 634, 234–242 (2024).
Badel, C., Da Cunha, V. & Oberto, J. Archaeal tyrosine recombinases. FEMS Microbiol. Rev. 45, fuab004 (2021).
Zieg, J., Silverman, M., Hilmen, M. & Simon, M. Recombinational switch for gene expression. Science 196, 170–172 (1977).
Stokes, H. W. & Hall, R. M. A novel family of potentially mobile DNA elements encoding site‐specific gene‐integration functions: integrons. Mol. Microbiol. 3, 1669–1683 (1989).
Escudero, J. A., Loot, C., Nivina, A. & Mazel, D. The integron: adaptation on demand. In Mobile DNA III 139–161 (American Society of Microbiology, 2015).
Ghaly, T. M. et al. Discovery of integrons in archaea: platforms for cross-domain gene transfer. Sci. Adv. 8, eabq6376 (2022).
Fluit, A. C. & Schmitz, F.-J. Resistance integrons and super-integrons. Clin. Microbiol. Infect. 10, 272–288 (2004).
Falbo, V. et al. Antibiotic resistance conferred by a conjugative plasmid and a class I integron in Vibrio cholerae O1 El Tor strains isolated in Albania and Italy. Antimicrob. Agents Chemother. 43, 693–696 (1999).
Golden, J. W., Mulligan, M. E. & Haselkorn, R. Different recombination site specificity of two developmentally regulated genome rearrangements. Nature 327, 526–529 (1987).
Johnson, C. M. & Grossman, A. D. Integrative and conjugative elements (ICEs): what they do and how they work. Annu. Rev. Genet. 49, 577–601 (2015).
Franke, A. E. & Clewell, D. B. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of ‘conjugal’ transfer in the absence of a conjugative plasmid. J. Bacteriol. 145, 494–502 (1981).
Burt, A. & Koufopanou, V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr. Opin. Genet. Dev. 14, 609–615 (2004).
Jacquier, A. & Dujon, B. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41, 383–394 (1985).
Craig, N. L. et al. (eds.) Mobile DNA III (ASM Press & Wiley, 2020).
Kleinstein, S. H., Louzoun, Y. & Shlomchik, M. J. Estimating hypermutation rates from clonal tree data. J. Immunol. 171, 4639–4649 (2003).
Wang, L. et al. Repeat-induced point mutation in Neurospora crassa causes the highest known mutation rate and mutational burden of any cellular life. Genome Biol. 21, 142 (2020).
Naorem, S. S. et al. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA. Proc. Natl Acad. Sci. USA 114, E10187–E10195 (2017).
Freitag, M., Williams, R. L., Kothe, G. O. & Selker, E. U. A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc. Natl Acad. Sci. USA 99, 8802–8807 (2002).
Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003).
Kim, S. K., Davis, M. M., Sinn, E., Patten, P. & Hood, L. Antibody diversity: somatic hypermutation of rearranged VH genes. Cell 27, 573–581 (1981).
Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251–262 (2005).
Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).
Chi, X., Li, Y., & Qi, X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 160, 233–247 (2020).
Liu, M. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008).
Yu, K. AID function in somatic hypermutation and class switch recombination. Acta Biochim. Biophys. Sin. 54, 759–766 (2022).
Horns, F., Petit, E., Yockteng, R. & Hood, M. E. Patterns of repeat-induced point mutation in transposable elements of basidiomycete fungi. Genome Biol. Evol. 4, 240–247 (2012).
Gladyshev, E. & Kleckner, N. Direct recognition of homology between double helices of DNA in Neurospora crassa. Nat. Commun. 5, 3509 (2014).
Gladyshev, E. Repeat-induced point mutation and other genome defense mechanisms in fungi. In The Fungal Kingdom 687–699 (ASM, 2017).
Foss, E. J., Garrett, P. W., Kinsey, J. A. & Selker, E. U. Specificity of repeat-induced point mutation (RIP) in Neurospora: sensitivity of non-Neurospora sequences, a natural diverged tandem duplication, and unique DNA adjacent to a duplicated region. Genetics 127, 711–717 (1991).
Rhoades, N. et al. Recombination-independent recognition of DNA homology for meiotic silencing in Neurospora crassa. Proc. Natl Acad. Sci. USA 118, e2108664118 (2021).
Liu, M. et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295, 2091–2094 (2002).
Macadangdang, B. R., Makanani, S. K. & Miller, J. F. Accelerated evolution by diversity-generating retroelements. Annu. Rev. Microbiol. 76, 389–411 (2022).
Doulatov, S. et al. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431, 476–481 (2004).
Guo, H. et al. Diversity-generating retroelement homing regenerates target sequences for repeated rounds of codon rewriting and protein diversification. Mol. Cell 31, 813–823 (2008).
Handa, S. et al. RNA control of reverse transcription in a diversity-generating retroelement. Nature 638, 1122–1129 (2025).
Esnault, C. et al. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433, 430–433 (2005).
Le Coq, J. & Ghosh, P. Conservation of the C-type lectin fold for massive sequence variation in a Treponema diversity-generating retroelement. Proc. Natl Acad. Sci. USA 108, 14649–14653 (2011).
Doré, H. et al. Targeted hypermutation of putative antigen sensors in multicellular bacteria. Proc. Natl Acad. Sci. USA 121, e2316469121 (2024).
Roux, S. et al. Ecology and molecular targets of hypermutation in the global microbiome. Nat. Commun. 12, 3076 (2021).
Prucca, C. G. et al. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456, 750–754 (2008).
Strathern, J. et al. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31, 183–192 (1982).
Rajaei, N., Chiruvella, K. K., Lin, F. & Aström, S. U. Domesticated transposase Kat1 and its fossil imprints induce sexual differentiation in yeast. Proc. Natl Acad. Sci. USA 111, 15491–15496 (2014).
Smyshlyaev, G., Bateman, A. & Barabas, O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol. Syst. Biol. 17, e9880 (2021).
Rogozin, I. B. et al. Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID–APOBEC family cytosine deaminase. Nat. Immunol. 8, 647–656 (2007).
Morimoto, R. et al. Cytidine deaminase 2 is required for VLRB antibody gene assembly in lampreys. Sci. Immunol. 5, eaba0925 (2020).
Arakawa, H., Hauschild, J. & Buerstedde, J.-M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306 (2002).
Harris, R. S., Sale, J. E., Petersen-Mahrt, S. K. & Neuberger, M. S. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol. 12, 435–438 (2002).
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).
Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).
Haber, J. E. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561–599 (1998).
Willis, T. G. & Dyer, M. J. S. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 96, 808–822 (2000).
Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).
Davis, M. M. et al. An immunoglobulin heavy-chain gene is formed by at least two recombinational events. Nature 283, 733–739 (1980).
Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985).
Wu, R. A., Upton, H. E., Vogan, J. M. & Collins, K. Telomerase mechanism of telomere synthesis. Annu. Rev. Biochem. 86, 439–460 (2017).
Mimori, T. et al. Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis–scleroderma overlap. J. Clin. Invest. 68, 611–620 (1981).
Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24, 4639–4648 (1996).
Deriano, L. & Roth, D. B. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47, 433–455 (2013).
Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).
Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).
Nassif, N., Penney, J., Pal, S., Engels, W. R. & Gloor, G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14, 1613–1625 (1994).
Mehta, A. & Haber, J. E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 6, a016428 (2014).
Beard, W. A., Horton, J. K., Prasad, R. & Wilson, S. H. Eukaryotic base excision repair: new approaches shine light on mechanism. Annu. Rev. Biochem. 88, 137–162 (2019).
Iyer, R. R., Pluciennik, A., Burdett, V. & Modrich, P. L. DNA mismatch repair: functions and mechanisms. Chem. Rev. 106, 302–323 (2006).
Ensminger, M. et al. DNA breaks and chromosomal aberrations arise when replication meets base excision repair. J. Cell Biol. 206, 29–43 (2014).