• Mattiazzi Usaj, M. et al. High-content screening for quantitative cell biology. Trends Cell Biol. 26, 598–611 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Bougen-Zhukov, N., Loh, S. Y., Lee, H. K. & Loo, L.-H. Large-scale image-based screening and profiling of cellular phenotypes. Cytom. A 91, 115–125 (2017).


    Google Scholar
     

  • Boutros, M., Heigwer, F. & Laufer, C. Microscopy-based high-content screening. Cell 163, 1314–1325 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, J. et al. Massively parallel CRISPR-based genetic perturbation screening at single-cell resolution. Adv. Sci. 10, e2204484 (2023).


    Google Scholar
     

  • Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Dagher, M. et al. nELISA: a high-throughput, high-plex platform enables quantitative profiling of the secretome. Preprint at bioRxiv https://doi.org/10.1101/2023.04.17.535914 (2023).

  • Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moshkov, N. et al. Predicting compound activity from phenotypic profiles and chemical structures. Nat. Commun. 14, 1967 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Way, G. P. et al. Morphology and gene expression profiling provide complementary information for mapping cell state. Cell Syst. 13, 911–923 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haghighi, M., Caicedo, J. C., Cimini, B. A., Carpenter, A. E. & Singh, S. High-dimensional gene expression and morphology profiles of cells across 28,000 genetic and chemical perturbations. Nat. Methods 19, 1550–1557 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrasekaran, S. N., Ceulemans, H., Boyd, J. D. & Carpenter, A. E. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nat. Rev. Drug Discov. 20, 145–159 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Williams, E. et al. Image Data Resource: a bioimage data integration and publication platform. Nat. Methods 14, 775–781 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohya, Y. et al. High-dimensional and large-scale phenotyping of yeast mutants. Proc. Natl Acad. Sci. USA 102, 19015–19020 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattiazzi Usaj, M. et al. Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability. Mol. Syst. Biol. 16, e9243 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heigwer, F. et al. A global genetic interaction network by single-cell imaging and machine learning. Cell Syst. https://doi.org/10.1016/j.cels.2023.03.003 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fay, M. M. et al. RxRx3: phenomics map of biology. Preprint at bioRxiv https://doi.org/10.1101/2023.02.07.527350 (2023).

  • Ramezani, M. et al. A genome-wide atlas of human cell morphology. Nat. Methods 22, 621–633 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazar, N. H. et al. High-resolution genome-wide mapping of chromosome-arm-scale truncations induced by CRISPR–Cas9 editing. Nat. Genet. 56, 1482–1493 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrasekaran, S. N. et al. Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations. Nat. Methods 21, 1114–1121 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrasekaran, S. N. et al. JUMP Cell Painting dataset: morphological impact of 136,000 chemical and genetic perturbations. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.534023 (2023).

  • Cimini, B. A. et al. Optimizing the Cell Painting assay for image-based profiling. Nat. Protoc. 18, 1981–2013 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 8, 659–661 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalinin, A. A. et al. A versatile information retrieval framework for evaluating profile strength and similarity. Nat. Commun. 16, 5181 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020).

    PubMed 

    Google Scholar
     

  • Ioannidis, V. N. et. al. Drkg – drug repurposing knowledge graph for covid-19. GitHub https://github.com/gnn4dr/DRKG/ (2020).

  • Kuo, S.-J. et al. TGF-β1 enhances FOXO3 expression in human synovial fibroblasts by inhibiting miR-92a through AMPK and p38 pathways. Aging 11, 4075–4089 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vivar, R. et al. Role of FoxO3a as a negative regulator of the cardiac myofibroblast conversion induced by TGF-β1. Biochim. Biophys. Acta, Mol. Cell. Res. 1867, 118695 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19, 382–398 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J., Roberts, A. J., Leschziner, A. E. & Reck-Peterson, S. L. Lis1 acts as a ‘clutch’ between the ATPase and microtubule-binding domains of the dynein motor. Cell 150, 975–986 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumari, A. et al. Phosphorylation and Pin1 binding to the LIC1 subunit selectively regulate mitotic dynein functions. J. Cell Biol. 220, e202005184 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dwivedi, D., Kumari, A., Rathi, S., Mylavarapu, S. V. S. & Sharma, M. The dynein adaptor Hook2 plays essential roles in mitotic progression and cytokinesis. J. Cell Biol. 218, 871–894 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohban, M. H. et al. Systematic morphological profiling of human gene and allele function via Cell Painting. eLife 6, e24060 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. et al. A Myt1 family transcription factor defines neuronal fate by repressing non-neuronal genes. eLife 8, e46703 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, M. et al. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct. Target. Ther. 7, 376 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, R. et al. Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell Res. 25, 985–988 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selinger, D. W. et al. A framework for autonomous AI-driven drug discovery. Preprint at bioRxiv https://doi.org/10.1101/2024.12.17.629024 (2024).

  • Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClintick, J. N. et al. Stress-response pathways are altered in the hippocampus of chronic alcoholics. Alcohol 47, 505–515 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Kapeli, K. et al. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat. Commun. 7, 12143 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vrenken, K. S. et al. The transcriptional repressor SNAI2 impairs neuroblastoma differentiation and inhibits response to retinoic acid therapy. Biochim. Biophys. Acta, Mol. Basis Dis. 1866, 165644 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Rivera-Reyes, A. et al. YAP1 enhances NF-κB-dependent and independent effects on clock-mediated unfolded protein responses and autophagy in sarcoma. Cell Death Dis. 9, 1108 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uezu, A. et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science 353, 1123–1129 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delgado, A. P., Brandao, P., Chapado, M. J., Hamid, S. & Narayanan, R. Open reading frames associated with cancer in the dark matter of the human genome. Cancer Genomics Proteom. 11, 201–213 (2014).


    Google Scholar
     

  • Lu, Z. & Feng, Y. Foreboding lncRNA markers of low-grade gliomas dependent on metabolism. Medicine 101, e31302 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Usman, S. et al. Transcriptome analysis reveals vimentin-induced disruption of cell-cell associations augments breast cancer cell migration. Cells 11, 4035 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochoa, D. et al. The next-generation Open Targets Platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).

    PubMed 

    Google Scholar
     

  • Tran, K.-V. et al. Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nat. Metab. 2, 397–412 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation. Nat. Cell Biol. 19, 626–638 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, D. C. et al. A proteome-wide atlas of drug mechanism of action. Nat. Biotechnol. 41, 845–857 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morita, M. et al. MTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol. Cell 67, 922–935 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Q. et al. UQCRFS1 serves as a prognostic biomarker and promotes the progression of ovarian cancer. Sci. Rep. 13, 8335 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doi, M. et al. Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour. Nat. Commun. 7, 10583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W.-Y. et al. Nerve growth factor interacts with CHRM4 and promotes neuroendocrine differentiation of prostate cancer and castration resistance. Commun. Biol. 4, 22 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iida, M., Anna, C. H., Gaskin, N. D., Walker, N. J. & Devereux, T. R. The putative tumor suppressor Tsc-22 is downregulated early in chemically induced hepatocarcinogenesis and may be a suppressor of Gadd45b. Toxicol. Sci. 99, 43–50 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, R., Zhou, D., Yu, B. & Zhou, Z. Phosphorylation of LZTS2 by PLK1 activates the Wnt pathway. Cell. Signal. 120, 111226 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Tang, S.-J. Synaptic activity-regulated Wnt signaling in synaptic plasticity, glial function and chronic pain. CNS Neurol. Disord. Drug Targets 13, 737–744 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kameda-Smith, M. M. et al. Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma. Nat. Commun. 13, 7506 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Multi-omic comparison of Alzheimer’s variants in human ESC-derived microglia reveals convergence at APOE. J. Exp. Med. 217, e20200474 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandrasekaran, S. N. Phenotypically active ORF and CRISPR consensus profiles. Zenodo https://doi.org/10.5281/zenodo.14025601 (2024).

  • Munoz, A. Phenotypically active ORF and CRISPR consensus profiles. Zenodo https://doi.org/10.5281/zenodo.14164990 (2024).

  • Arevalo, J. et al. Evaluating batch correction methods for image-based cell profiling. Nat. Commun. 15, 6516 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, A. H. et al. High-throughput phenotyping of lung cancer somatic mutations. Cancer Cell 30, 214–228 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR–Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, S., Bray, M.-A., Jones, T. R. & Carpenter, A. E. Pipeline for illumination correction of images for high-throughput microscopy. J. Microsc. 256, 231–236 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serrano, E. et al. Reproducible image-based profiling with Pycytominer. Nat. Methods 22, 677–680 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuchida, C. A. et al. Mitigation of chromosome loss in clinical CRISPR–Cas9-engineered T cells. Cell 186, 4567–4582 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nahmad, A. D. et al. Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage. Nat. Biotechnol. 40, 1807–1813 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Przewrocka, J., Rowan, A., Rosenthal, R., Kanu, N. & Swanton, C. Unintended on-target chromosomal instability following CRISPR/Cas9 single gene targeting. Ann. Oncol. 31, 1270–1273 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. & Chandrasekaran, S. N. Similarity of CRISPR genes grouped by chromosome location without chromosome arm correction. Zenodo https://doi.org/10.5281/zenodo.13754407 (2024).

  • Chen, Z. & Chandrasekaran, S. N. Similarity of ORF genes grouped by chromosome without chromosome arm correction. Zenodo https://doi.org/10.5281/zenodo.13754178 (2024).

  • Chen, Z. & Chandrasekaran, S. N. Similarity of CRISPR genes grouped by chromosome location with chromosome arm correction. Zenodo https://doi.org/10.5281/zenodo.13754508 (2024).

  • Ding, X. et al. Scaling up your kernels to 31 × 31: revisiting large kernel design in CNNs. Preprint at https://arxiv.org/abs/2203.06717 (2022).

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clough, E. et al. NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res. 52, D138–D144 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. Nat. Biomed. Eng. 6, 1353–1369 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kipf, T. N. & Welling, M. Variational graph auto-encoders. Preprint at https://arxiv.org/abs/1611.07308 (2016).

  • Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. Preprint at https://arxiv.org/abs/1903.02428 (2019).

  • Bonner, S. et al. Understanding the performance of knowledge graph embeddings in drug discovery. Artif. Intell. Life Sci. 2, 100036 (2022).


    Google Scholar
     

  • Ali, M. et al. Bringing light into the dark: a large-scale evaluation of knowledge graph embedding models under a unified framework. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8825–8845 (2022).

    PubMed 

    Google Scholar
     

  • Ren, F. et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat. Biotechnol. 43, 63–75 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gene Ontology Consortium, et al. The Gene Ontology knowledgebase in 2023. Genetics 224, iyad031 (2023).