• Bressan, D., Battistoni, G. & Hannon, G. J. The dawn of spatial omics. Science 381, eabq4964 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Spatiotemporal omics for biology and medicine. Cell 187, 4488–4519 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain, S. & Eadon, M. T. Spatial transcriptomics in health and disease. Nat. Rev. Nephrol. 20, 659–671 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexandrov, T., Saez-Rodriguez, J. & Saka, S. K. Enablers and challenges of spatial omics, a melting pot of technologies. Mol. Syst. Biol. 19, e10571 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Jonghe, J. et al. scTrends: a living review of commercial single-cell and spatial ’omic technologies. Cell Genom. 4, 100723 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulati, G. S., D’Silva, J. P., Liu, Y., Wang, L. & Newman, A. M. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat. Rev. Mol. Cell Biol. 26, 11–31 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Z. et al. 3D reconstruction of a gastrulating human embryo. Cell 187, 2855–2874.e19 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat. Cell Biol. 25, 604–615 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Cui, L. et al. Spatial transcriptomic characterization of a Carnegie stage 7 human embryo. Nat. Cell Biol. 27, 360–369 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavon, N. et al. Patterning ganglionic eminences in developing human brain organoids using a morphogen-gradient-inducing device. Cell Rep. Methods 4, 100689 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchís-Calleja, F. et al. Decoding morphogen patterning of human neural organoids with a multiplexed single-cell transcriptomic screen. Preprint at bioRxiv https://doi.org/10.1101/2024.02.08.579413 (2024).

  • Bertacchi, M., Maharaux, G., Loubat, A., Jung, M. & Studer, M. FGF8-mediated gene regulation affects regional identity in human cerebral organoids. eLife 13, e98096 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amin, N. D. et al. Generating human neural diversity with a multiplexed morphogen screen in organoids. Cell Stem Cell 31, 1831–1846.e9 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 8, 70 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Carmona-Fontaine, C. et al. Metabolic origins of spatial organization in the tumor microenvironment. Proc. Natl Acad. Sci. USA 114, 2934–2939 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haley, M. J. et al. Hypoxia coordinates the spatial landscape of myeloid cells within glioblastoma to affect survival. Sci. Adv. 10, eadj3301 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Identification of hypoxic macrophages in glioblastoma with therapeutic potential for vasculature normalization. Cancer Cell 42, 815–832.e12 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rashidi, A. et al. Myeloid cell-derived creatine in the hypoxic niche promotes glioblastoma growth. Cell Metab. 36, 62–77.e8 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. The relevance between hypoxia-dependent spatial transcriptomics and the prognosis and efficacy of immunotherapy in claudin-low breast cancer. Front. Immunol. 13, 1042835 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malagoli Tagliazucchi, G., Wiecek, A. J., Withnell, E. & Secrier, M. Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nat. Commun. 14, 789 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kureshi, C. T. & Dougan, S. K. Cytokines in cancer. Cancer Cell 43, 15–35 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. et al. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct. Target. Ther. 9, 225 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, R. et al. Comprehensive analysis of spatial architecture in primary liver cancer. Sci. Adv. 7, eabg3750 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jing, X. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campillo, N. et al. Differential oxygenation in tumor microenvironment modulates macrophage and cancer cell crosstalk: Novel experimental setting and proof of concept. Front. Oncol. 9, 43 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auxillos, J. et al. Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes. Sci. Adv. 10, eadn3448 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kueckelhaus, J. et al. Inferring histology-associated gene expression gradients in spatial transcriptomic studies. Nat. Commun. 15, 7280 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. SpaceWalker enables interactive gradient exploration for spatial transcriptomics data. Cell Rep. Methods 3, 100645 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chitra, U. et al. Mapping the topography of spatial gene expression with interpretable deep learning. Nat. Methods 22, 298–309 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rood, J. E. et al. The Human Cell Atlas from a cell census to a unified foundation model. Nature 637, 1065–1071 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dann, E. et al. Precise identification of cell states altered in disease using healthy single-cell references. Nat. Genet. 55, 1998–2008 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabula Sapiens Consortium. The tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article 

    Google Scholar
     

  • Barkley, D. et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet. 54, 1192–1201 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611, 594–602 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo, C.-K. et al. Tumour evolution and microenvironment interactions in 2D and 3D space. Nature 634, 1178–1186 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engblom, C. et al. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. Science 382, eadf8486 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cords, L. et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat. Commun. 14, 4294 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, C. et al. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol. Cancer 22, 170 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, X., Tian, Y. & Lv, C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol. Cancer 23, 150 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matusiak, M. et al. Spatially segregated macrophage populations predict distinct outcomes in colon cancer. Cancer Discov. 14, 1418–1439 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nasir, I. et al. Tumor macrophage functional heterogeneity can inform the development of novel cancer therapies. Trends Immunol. 44, 971–985 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ianevski, A. et al. Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones. Nat. Commun. 15, 8579 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tirosh, I. & Suva, M. L. Cancer cell states: lessons from ten years of single-cell RNA-sequencing of human tumors. Cancer Cell 42, 1497–1506 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, Z. et al. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 187, 6760–6779.e24 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101–109 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watson, B. R. et al. Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution. Nat. Commun. 16, 319 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayr, C. H. et al. Spatial transcriptomic characterization of pathologic niches in IPF. Sci. Adv. 10, eadl5473 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franzén, L. et al. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat. Genet. 56, 1725–1736 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenigsbuch, M. et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 25, 876–886 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lázár, E. et al. Spatiotemporal gene expression and cellular dynamics of the developing human heart. Nat. Genet. https://doi.org/10.1038/s41588-025-02352-6 (2025).

  • He, P. et al. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 185, 4841–4860.e25 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suo, C. et al. Mapping the developing human immune system across organs. Science 376, eabo0510 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenbaum, S. et al. A spatially resolved timeline of the human maternal-fetal interface. Nature 619, 595–605 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yayon, N. et al. A spatial human thymus cell atlas mapped to a continuous tissue axis. Nature 635, 708–718 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647–1660.e19 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Nat. Neurosci. 26, 891–901 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sountoulidis, A. et al. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat. Cell Biol. 25, 351–365 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. et al. A human embryonic limb cell atlas resolved in space and time. Nature 635, 668–678 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • To, K. et al. A multi-omic atlas of human embryonic skeletal development. Nature 635, 657–667 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quach, H. et al. Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity. Nat. Commun. 15, 5898 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sariyar, S. et al. High-parametric protein maps reveal the spatial organization in early-developing human lung. Nat. Commun. 15, 9381 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gopee, N. H. et al. A prenatal skin atlas reveals immune regulation of human skin morphogenesis. Nature 635, 679–689 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cranley, J. et al. Multiomic analysis reveals developmental dynamics of the human heart in health and disease. Preprint at bioRxiv https://doi.org/10.1101/2024.04.29.591736 (2024).

  • Bayraktar, S. et al. High-resolution atlas of the developing human heart and the great vessels. Preprint at bioRxiv https://doi.org/10.1101/2024.04.27.591127 (2024).

  • Valm, A. M. et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl Acad. Sci. USA 108, 4152–4157 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, H. et al. Highly multiplexed spatial mapping of microbial communities. Nature 588, 676–681 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu, L. et al. Simultaneous profiling of host expression and microbial abundance by spatial metatranscriptome sequencing. Genome Res. 33, 401–411 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, B. et al. A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment. Nat. Commun. 16, 1230 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saarenpää, S. et al. Spatial metatranscriptomics resolves host-bacteria-fungi interactomes. Nat. Biotechnol. 42, 1384–1393 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Sarfatis, A., Wang, Y., Twumasi-Ankrah, N. & Moffitt, J. R. Highly multiplexed spatial transcriptomics in bacteria. Science 387, eadr0932 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sounart, H. et al. Dual spatially resolved transcriptomics for human host-pathogen colocalization studies in FFPE tissue sections. Genome Biol. 24, 237 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rendeiro, A. F. et al. The spatial landscape of lung pathology during COVID-19 progression. Nature 593, 564–569 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. T. H. et al. Integrated histopathology, spatial and single cell transcriptomics resolve cellular drivers of early and late alveolar damage in COVID-19. Nat. Commun. 16, 1979 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. et al. Brain-wide alterations revealed by spatial transcriptomics and proteomics in COVID-19 infection. Nat. Aging 4, 1598–1618 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pita-Juarez, Y. et al. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. Genome Biol. 26, 56 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J., Larsson, L., Swarbrick, A. & Lundeberg, J. Spatial landscapes of cancers: insights and opportunities. Nat. Rev. Clin. Oncol. 21, 660–674 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Gong, D., Arbesfeld-Qiu, J. M., Perrault, E., Bae, J. W. & Hwang, W. L. Spatial oncology: translating contextual biology to the clinic. Cancer Cell 42, 1653–1675 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M., Zhang, T., Xia, R., Wei, Y. & Wei, X. Targeting the tumor stroma for cancer therapy. Mol. Cancer 21, 208 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bilotta, M. T., Antignani, A. & Fitzgerald, D. J. Managing the TME to improve the efficacy of cancer therapy. Front. Immunol. 13, 954992 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rui, R., Zhou, L. & He, S. Cancer immunotherapies: advances and bottlenecks. Front. Immunol. 14, 1212476 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teillaud, J.-L., Houel, A., Panouillot, M., Riffard, C. & Dieu-Nosjean, M.-C. Tertiary lymphoid structures in anticancer immunity. Nat. Rev. Cancer 24, 629–646 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanhersecke, L. et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, Y., Wang, T. & Wu, H. Tertiary lymphoid structures in autoimmune diseases. Front. Immunol. 14, 1322035 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, Y., Silina, K., van den Broek, M., Hirahara, K. & Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. Nat. Rev. Nephrol. 19, 525–537 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Castillo, R. L. et al. Spatial transcriptomics stratifies psoriatic disease severity by emergent cellular ecosystems. Sci. Immunol. 8, eabq7991 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayar, S. et al. Molecular and spatial analysis of tertiary lymphoid structures in Sjogren’s syndrome. Nat. Commun. 16, 5 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Spatial maps of T cell receptors and transcriptomes reveal distinct immune niches and interactions in the adaptive immune response. Immunity 55, 1940–1952.e5 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandyopadhyay, S. et al. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell 187, 3120–3140.e29 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dasdemir, E. et al. Spatial transcriptomics reveals inflammation and trans-differentiation states of acute myeloid leukemia in extramedullary and medullary tissues. Preprint at bioRxiv https://doi.org/10.1101/2024.11.11.622999 (2024).

  • Vadakekolathu, J. et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci. Transl. Med. 12, eaaz0463 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutella, S. et al. Immune dysfunction signatures predict outcomes and define checkpoint blockade-unresponsive microenvironments in acute myeloid leukemia. J. Clin. Invest. 132, e159579 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koedijk, J. B. et al. A multidimensional analysis reveals distinct immune phenotypes and the composition of immune aggregates in pediatric acute myeloid leukemia. Leukemia 38, 2332–2343 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Multimodal transcriptomics reveal neurogenic aging trajectories and age-related regional inflammation in the dentate gyrus. Nat. Neurosci. 28, 415–430 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, E. D. et al. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 638, 160–171 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991.e19 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avey, D. R. et al. Uncovering plaque-glia niches in human Alzheimer’s disease brains using spatial transcriptomics. Mol. Neurodegener. Adv. 1, 2 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyoshi, E. et al. Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer’s disease. Nat. Genet. 56, 2704–2717 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat. Neurosci. 25, 588–595 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, M. et al. The spatial landscape of glial pathology and T-cell response in Parkinson’s disease substantia nigra. Nat. Commun. 16, 7146 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell 32, 479–498 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Theocharidis, G. et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat. Commun. 13, 181 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, A. S. F. et al. Spatio-temporal dynamics of the fibrotic niche in cardiac repair. Preprint at bioRxiv https://doi.org/10.1101/2024.11.10.622609 (2024).

  • Yamada, S. et al. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction. Nat. Cardiovasc. Res. 1, 1072–1083 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wünnemann, F. et al. Spatial omics of acute myocardial infarction reveals a novel mode of immune cell infiltration. Preprint at bioRxiv https://doi.org/10.1101/2024.05.20.594955 (2024).

  • He, J. et al. Single-cell and spatial transcriptomic analyses reveals the dynamic transcript profiles of myocardial lymphangiogenesis post myocardial infarction. eLife 13, RP99192 (2024).


    Google Scholar
     

  • Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eyres, M. et al. Spatially resolved deconvolution of the fibrotic niche in lung fibrosis. Cell Rep. 40, 111230 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vannan, A. et al. Spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. Nat. Genet. 57, 647–658 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abedini, A. et al. Single-cell multi-omic and spatial profiling of human kidneys implicates the fibrotic microenvironment in kidney disease progression. Nat. Genet. 56, 1712–1724 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, D. S., Villanueva, M. A., Winter, P. S. & Shalek, A. K. Adapting systems biology to address the complexity of human disease in the single-cell era. Nat. Rev. Genet. 26, 514–531 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahama, M. et al. A pairwise cytokine code explains the organism-wide response to sepsis. Nat. Immunol. 25, 226–239 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pierre, A., Lancel, S. & Preau, S. Organ crosstalk and dysfunction in sepsis: harnessing emerging biotechnologies for future breakthroughs. Ann. Intensive Care 14, 161 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lilja, S. et al. Multi-organ single-cell analysis reveals an on/off switch system with potential for personalized treatment of immunological diseases. Cell Rep. Med. 4, 100956 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsagiopoulou, M., Rashmi, S., Aguilar-Fernandez, S., Nieto, J. & Gut, I. G. Multi-organ single-cell transcriptomics of immune cells uncovered organ-specific gene expression and functions. Sci. Data 11, 316 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y. et al. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 42, 1764–1783.e10 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e14 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, J. et al. The genetic architecture of biological age in nine human organ systems. Nat. Aging 4, 1290–1307 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Y. et al. Metastasis organotropism: redefining the congenial soil. Dev. Cell 49, 375–391 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrolo, M. et al. Metastatic organotropism: a brief overview. Front. Oncol. 14, 1358786 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunbar, K. J. et al. Regulation of metastatic organotropism. Trends Cancer 11, 216–231 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuett, L. et al. Distant metastases of breast cancer resemble primary tumors in cancer cell composition but differ in immune cell phenotypes. Cancer Res. 85, 15–31 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klughammer, J. et al. A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features. Nat. Med. 30, 3236–3249 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, B. E. et al. An omic and multidimensional spatial atlas from serial biopsies of an evolving metastatic breast cancer. Cell Rep. Med. 3, 100525 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brady, L. et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat. Commun. 12, 1426 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tagore, S. et al. Single-cell and spatial genomic landscape of non-small cell lung cancer brain metastases. Nat. Med. 31, 1351–1363 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. The spatial transcriptomic landscape of non-small cell lung cancer brain metastasis. Nat. Commun. 13, 5983 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karimi, E. et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 614, 555–563 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundar, R. et al. Spatial profiling of gastric cancer patient-matched primary and locoregional metastases reveals principles of tumour dissemination. Gut 70, 1823–1832 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, J. J. et al. Spatially resolved niche and tumor microenvironmental alterations in gastric cancer peritoneal metastases. Gastroenterology 167, 1384–1398.e4 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levy, J. J. et al. Identification of spatial proteomic signatures of colon tumor metastasis: a digital spatial profiling approach. Am. J. Pathol. 193, 778–795 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sathe, A. et al. Colorectal cancer metastases in the liver establish immunosuppressive spatial networking between tumor-associated SPP1+ macrophages and fibroblasts. Clin. Cancer Res. 29, 244–260 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. Sci. Adv. 9, eadf5464 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12, 134–153 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, C. et al. Delineating the early dissemination mechanisms of acral melanoma by integrating single-cell and spatial transcriptomic analyses. Nat. Commun. 14, 8119 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biermann, J. et al. Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell 185, 2591–2608.e30 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boe, R. H., Triandafillou, C. G., Lazcano, R., Wargo, J. A.& Raj, A. Spatial transcriptomics reveals influence of microenvironment on intrinsic fates in melanoma therapy resistance. Preprint at bioRxiv https://doi.org/10.1101/2024.06.30.601416 (2024).

  • Naulaerts, S. et al. Multiomics and spatial mapping characterizes human CD8+ T cell states in cancer. Sci. Transl. Med. 15, eadd1016 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, Y., Ding, X. & Ye, Y. The spatial multi-omics revolution in cancer therapy: precision redefined. Cell Rep. Med. 5, 101740 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Mauro, F. & Arbore, G. Spatial dissection of the immune landscape of solid tumors to advance precision medicine. Cancer Immunol. Res. 12, 800–813 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bollhagen, A. & Bodenmiller, B. Highly multiplexed tissue imaging in precision oncology and translational cancer research. Cancer Discov. 14, 2071–2088 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clifton, K. et al. STalign: alignment of spatial transcriptomics data using diffeomorphic metric mapping. Nat. Commun. 14, 8123 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [No authors listed] STAligner enables the integration and alignment of multiple spatial transcriptomics datasets. Nat. Comput. Sci. 3, 831–832 (2023).

    Article 

    Google Scholar
     

  • Mitchel, J., Gao, T., Cole, E., Petukhov, V. & Kharchenko, P. V. Impact of segmentation errors in analysis of spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2025.01.02.631135 (2025).

  • Park, J. et al. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nat. Commun. 12, 3545 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Si, Y. et al. FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics. Nat. Methods 21, 1843–1854 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alam, S. et al. Popari: modeling multisample variation in spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2025.05.08.652741 (2025).

  • Holdener, C. & De Vlaminck, I. Smoothie: efficient inference of spatial co-expression networks from denoised spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2025.02.26.640406 (2025).

  • Rood, J. E. et al. Toward a common coordinate framework for the human body. Cell 179, 1455–1467 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersson, A. et al. A landmark-based common coordinate framework for spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2021.11.11.468178 (2021).

  • Börner, K. et al. Human biomolecular atlas program (HuBMAP): 3D human reference atlas construction and usage. Nat. Methods 22, 845–860 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Börner, K. et al. Anatomical structures, cell types and biomarkers of the human reference atlas. Nat. Cell Biol. 23, 1117–1128 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. & Haendel, M. A. Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13, R5 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ekvall, M. et al. Spatial landmark detection and tissue registration with deep learning. Nat. Methods 21, 673–679 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, M. Y. et al. A visual-language foundation model for computational pathology. Nat. Med. 30, 863–874 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 634, 970–978 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chelebian, E., Avenel, C. & Wählby, C. Combining spatial transcriptomics with tissue morphology. Nat. Commun. 16, 4452 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaume, G. et al. HEST-1k: a dataset for spatial transcriptomics and histology image analysis. In 38th Conference on Neural Information Processing Systems (NeurIPS, 2024).

  • Chelebian, E. et al. Discovery of tumour indicating morphological changes in benign prostate biopsies through AI. Sci. Rep. 15, 30770 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, B., Bergenstråhle, L. & Lundeberg, J. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat. Biomed. Eng. 4, 827–834 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40, 476–479 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, D. et al. Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nat. Biotechnol. 42, 1372–1377 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Benchmarking the translational potential of spatial gene expression prediction from histology. Nat. Commun. 16, 1544 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342–1351 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Monjo, T., Koido, M., Nagasawa, S., Suzuki, Y. & Kamatani, Y. Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation. Sci. Rep. 12, 4133 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cisternino, F. et al. Self-supervised learning for characterising histomorphological diversity and spatial RNA expression prediction across 23 human tissue types. Nat. Commun. 15, 5906 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, S. et al. Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor-immune hubs. Nat. Biotechnol. 43, 223–235 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. A visual-omics foundation model to bridge histopathology with spatial transcriptomics. Nat. Methods 22, 1568–1582 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, D.-T. et al. A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics. Nat. Cancer 5, 1305–1317 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, M. Y. et al. A multimodal generative AI copilot for human pathology. Nature 634, 466–473 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. SpatialAgent: an autonomous AI agent for spatial biology. Preprint at bioRxiv https://doi.org/10.1101/2025.04.03.646459 (2025).

  • Vorontsov, E. et al. A foundation model for clinical-grade computational pathology and rare cancers detection. Nat. Med. 30, 2924–2935 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with tangram. Nat. Methods 18, 1352–1362 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenckstern, J. et al. AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery. Preprint at https://doi.org/10.48550/arXiv.2501.06039 (2025).

  • Bunne, C. et al. How to build the virtual cell with artificial intelligence: priorities and opportunities. Preprint at https://doi.org/10.48550/arXiv.2409.11654 (2024).

  • Zhang, J. et al. Tahoe-100M: a giga-scale single-cell perturbation atlas for context-dependent gene function and cellular modeling. Preprint at bioRxiv https://doi.org/10.1101/2025.02.20.639398 (2025).

  • Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teo, A. Y. Y. et al. Identification of perturbation-responsive regions and genes in comparative spatial transcriptomics atlases. Preprint at bioRxiv https://doi.org/10.1101/2024.06.13.598641 (2024).

  • Megas, S. et al. Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling. Preprint at https://doi.org/10.48550/arXiv.2409.05804 (2024).

  • Frey, N.C. et al. Lab-in-the-loop therapeutic antibody design with deep learning. Preprint at bioRxiv https://doi.org/10.1101/2025.02.19.639050 (2025).

  • Laubenbacher, R., Mehrad, B., Shmulevich, I. & Trayanova, N. Digital twins in medicine. Nat. Comput. Sci. 4, 184–191 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia, H. S. et al. Spatial proteomics in three-dimensional intact specimens. Cell 185, 5040–5058.e19 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanatani, S. et al. Whole-brain spatial transcriptional analysis at cellular resolution. Science 386, 907–915 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandin, V. et al. Deep-tissue transcriptomics and subcellular imaging at high spatial resolution. Science 388, eadq2084 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, R. et al. Three-dimensional single-cell transcriptome imaging of thick tissues. eLife 12, RP90029 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ertürk, A. Deep 3D histology powered by tissue clearing, omics and AI. Nat. Methods 21, 1153–1165 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng. 1, 0084 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and integration of spatial transcriptomics data. Nat. Methods 19, 567–575 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Spatiotemporal modeling of molecular holograms. Cell 187, 7351–7373.e61 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almagro-Pérez, C. et al. AI-driven 3D spatial transcriptomics. Preprint at https://doi.org/10.48550/arXiv.2502.17761 (2025).

  • Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications. J. Hematol. Oncol. 17, 72 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiessling, P. & Kuppe, C. Spatial multi-omics: novel tools to study the complexity of cardiovascular diseases. Genome Med. 16, 14 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenstein, M. Seven technologies to watch in 2022. Nature 601, 658–661 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with MUSE. Nat. Biotechnol. 40, 1200–1209 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long, Y. et al. Deciphering spatial domains from spatial multi-omics with SpatialGlue. Nat. Methods 21, 1658–1667 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, K. et al. Resolving tissue complexity by multimodal spatial omics modeling with MISO. Nat. Methods 22, 530–538 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S., Lin, S. & Yang, C. The dawn of spatiotemporal transcriptomics. Biomed. Anal. 1, 154–161 (2024).

    Article 

    Google Scholar
     

  • Velten, B. & Stegle, O. Principles and challenges of modeling temporal and spatial omics data. Nat. Methods 20, 1462–1474 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, J. et al. Spatiotemporally resolved transcriptomics reveals the subcellular RNA kinetic landscape. Nat. Methods 20, 695–705 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. Nat. Commun. 12, 3358 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rietjens, R. G. J. & Heijs, B. In situ isotope tracing at single-cell resolution using mass spectrometry imaging. Methods Mol. Biol. 2855, 523–535 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Spatially resolved isotope tracing reveals tissue metabolic activity. Nat. Methods 19, 223–230 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buglakova, E. et al. Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Nat. Metab. 6, 1695–1711 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratz, M. et al. Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nat. Neurosci. 25, 285–294 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow, K.-H. K. et al. Imaging cell lineage with a synthetic digital recording system. Science 372, eabb3099 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Z. et al. Lineage recording in human cerebral organoids. Nat. Methods 19, 90–99 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tong, L. et al. Patient-derived organoids in precision cancer medicine. Med 5, 1351–1377 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wahle, P. et al. Multimodal spatiotemporal phenotyping of human retinal organoid development. Nat. Biotechnol. 41, 1765–1775 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiaradia, I. et al. Tissue morphology influences the temporal program of human brain organoid development. Cell Stem Cell 30, 1351–1367.e10 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legnini, I. et al. Spatiotemporal, optogenetic control of gene expression in organoids. Nat. Methods 20, 1544–1552 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, Y. et al. Systematic comparison of sequencing-based spatial transcriptomic methods. Nat. Methods 21, 1743–1754 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, P. et al. Systematic benchmarking of high-throughput subcellular spatial transcriptomics platforms. Preprint at bioRxiv https://doi.org/10.1101/2024.12.23.630033 (2024).

  • Wang, H. et al. Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues. Preprint at bioRxiv https://doi.org/10.1101/2023.12.07.570603 (2023).

  • Kim, Y. et al. Seq-Scope protocol: repurposing illumina sequencing flow cells for high-resolution spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2024.03.29.587285 (2024).

  • Poovathingal, S. et al. Nova-ST: nano-patterned ultra-dense platform for spatial transcriptomics. Cell Rep. Methods 4, 100831 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schott, M. et al. Open-ST: high-resolution spatial transcriptomics in 3D. Cell 187, 3953–3972.e26 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, R. et al. Sequencing-based spatial transcriptomics with scRNA-seq sensitivity. Preprint at bioRxiv https://doi.org/10.1101/2025.01.15.633111 (2025).

  • Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebrigand, K. et al. The spatial landscape of gene expression isoforms in tissue sections. Nucleic Acids Res. 51, e47 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, L. S. et al. Detection of allele-specific expression in spatial transcriptomics with spASE. Genome Biol. 25, 180 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, C. et al. Inferring allele-specific copy number aberrations and tumor phylogeography from spatially resolved transcriptomics. Nat. Methods 21, 2239–2247 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Llorens-Bobadilla, E. et al. Solid-phase capture and profiling of open chromatin by spatial ATAC. Nat. Biotechnol. 41, 1085–1088 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, P. et al. Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues. Nat. Methods 22, 520–529 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seferbekova, Z., Lomakin, A., Yates, L. R. & Gerstung, M. Spatial biology of cancer evolution. Nat. Rev. Genet. 24, 295–313 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [No authors listed] Method of the year 2024: spatial proteomics. Nat. Methods 21, 2195–2196 (2024).

    Article 

    Google Scholar
     

  • Mund, A., Brunner, A.-D. & Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82, 2335–2349 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Souza, N., Zhao, S. & Bodenmiller, B. Multiplex protein imaging in tumour biology. Nat. Rev. Cancer 24, 171–191 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Jhaveri, N. et al. Mapping the spatial proteome of head and neck tumors: key immune mediators and metabolic determinants in the tumor microenvironment. GEN Biotechnol. 2, 418–434 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yagnik, G., Liu, Z., Rothschild, K. J. & Lim, M. J. Highly multiplexed immunohistochemical MALDI-MS imaging of biomarkers in tissues. J. Am. Soc. Mass. Spectrom. 32, 977–988 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claes, B. S. R. et al. MALDI-IHC-guided in-depth spatial proteomics: targeted and untargeted MSI combined. Anal. Chem. 95, 2329–2338 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Quardokus, E. M. et al. Organ mapping antibody panels: a community resource for standardized multiplexed tissue imaging. Nat. Methods 20, 1174–1178 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mund, A. et al. Deep visual proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. npj Imaging 2, 20 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexandrov, T. Spatial metabolomics: from a niche field towards a driver of innovation. Nat. Metab. 5, 1443–1445 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Saharuka, V. et al. Large-scale evaluation of spatial metabolomics protocols and technologies. Preprint at bioRxiv https://doi.org/10.1101/2024.01.29.577354 (2024).

  • Singhal, V. et al. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Nat. Genet. 56, 431–441 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat. Commun. 14, 1548 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 19, 662–670 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armingol, E., Baghdassarian, H. M. & Lewis, N. E. The diversification of methods for studying cell-cell interactions and communication. Nat. Rev. Genet. 25, 381–400 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plummer, J. T., Vlachos, I. S. & Martelotto, L. G. Introducing the global alliance for spatial technologies (GESTALT). Nat. Genet. 57, 275–279 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, J. et al. Transitioning single-cell genomics into the clinic. Nat. Rev. Genet. 24, 573–584 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar