• UNEP. State of Finance for Nature 2023 (UNEP, 2023).

  • Kedward, K., zu Ermgassen, S. O. S. E., Ryan-Collins, J. & Wunder, S. Heavy reliance on private finance alone will not deliver conservation goals. Nat. Ecol. Evol. 7, 1339–1342 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Bull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798 (2018).

    Article 

    Google Scholar
     

  • zu Ermgassen, S. O. S. E. et al. The current state, opportunities and challenges for upscaling private investment in biodiversity in Europe. Nat. Ecol. Evol. 9, 515–524 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damiens, F. L., Porter, L. & Gordon, A. The politics of biodiversity offsetting across time and institutional scales. Nat. Sustain. 4, 170–179 (2021).

    Article 

    Google Scholar
     

  • Swinfield, T., Shrikanth, S., Bull, J. W., Madhavapeddy, A. & zu Ermgassen, S. O. S. E. Nature-based credit markets at a crossroads. Nat. Sustain. 7, 1217–1220 (2024).

    Article 

    Google Scholar
     

  • zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under ‘no net loss’ policies: a global review. Conserv. Lett. 12, e12664 (2019).

    Article 

    Google Scholar
     

  • Rau, E.-P. et al. Mitigating risk of credit reversal in nature-based climate solutions by optimally anticipating carbon release. Carbon Manage. 15, 2390854 (2024).


    Google Scholar
     

  • Balmford, A. et al. Realizing the social value of impermanent carbon credits. Nat. Clim. Change 13, 1172–1178 (2023).

    Article 

    Google Scholar
     

  • Maron, M. et al. Taming a wicked problem: resolving controversies in biodiversity offsetting. BioScience 66, 489–498 (2016).

    Article 

    Google Scholar
     

  • Badgley, G. et al. California’s forest carbon offsets buffer pool is severely undercapitalized. Front. For. Glob. Change 5, 930426 (2022).

    Article 

    Google Scholar
     

  • Hough, P. & Robertson, M. Mitigation under Section 404 of the Clean Water Act: where it comes from, what it means. Wetl. Ecol. Manage. 17, 15–33 (2009).

    Article 

    Google Scholar
     

  • Rampling, E. E., zu Ermgassen, S. O. S. E., Hawkins, I. & Bull, J. W. Achieving biodiversity net gain by addressing governance gaps underpinning ecological compensation policies. Conserv. Biol. 38, e14198 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • zu Ermgassen, S. O. S. E. et al. Exploring the ecological outcomes of mandatory biodiversity net gain using evidence from early-adopter jurisdictions in England. Conserv. Lett. 14, e12820 (2021).

    Article 

    Google Scholar
     

  • Defra. Biodiversity Net Gain and Local Nature Recovery Strategies: Impact Assessment (Defra, 2019).

  • Duffus, N. E., zu Ermgassen, S.O.S.E., Grenyer, R. & Lewis, O. T. Early outcomes of England′ s new biodiversity offset market. Preprint at bioRxiv https://doi.org/10.1101/2025.06.22.660961 (2025).

  • White, T. B., Bull, J. W., Toombs, T. P. & Knight, A. T. Uncovering opportunities for effective species conservation banking requires navigating technical and practical complexities. Conserv. Sci. Pract. 3, e431 (2021).

    Article 

    Google Scholar
     

  • Grimm, M. Regulation, the hybrid market, and species conservation: the case of conservation banking in California. Ambio 52, 769–785 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Balmford, B. Mechanism Design in Payment for Ecosystem Service Schemes. Thesis, Univ. Exeter (2022).

  • Needham, K., de Vries, F. P., Armsworth, P. R. & Hanley, N. Designing markets for biodiversity offsets: lessons from tradable pollution permits. J. Appl. Ecol. 56, 1429–1435 (2019).

    Article 

    Google Scholar
     

  • Teytelboym, A. Natural capital market design. Oxf. Rev. Econ. Policy 35, 138–161 (2019).

    Article 

    Google Scholar
     

  • West, T. A. et al. Action needed to make carbon offsets from forest conservation work for climate change mitigation. Science 381, 873–877 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sylvera. The State of Carbon Credits 2023 (Sylvera, 2023).

  • Hahn, R. W., Hendren, N., Metcalfe, R. D. & Sprung-Keyser, B. A Welfare Analysis of Policies Impacting Climate Change (NBER, 2024).

  • Malan, M. et al. Evaluating the impacts of a large-scale voluntary REDD+ project in Sierra Leone. Nat. Sustain. 7, 120–129 (2024).

    Article 

    Google Scholar
     

  • Hahn, R. W. Economic prescriptions for environmental problems: how the patient followed the doctor’s orders. J. Econ. Perspect. 3, 95–114 (1989).

    Article 

    Google Scholar
     

  • Bull, J. W. et al. Quantifying the ‘avoided’ biodiversity impacts associated with economic development. Front. Ecol. Environ. 20, 370–378 (2022).

    Article 

    Google Scholar
     

  • Damiens, F. L., Backstrom, A. & Gordon, A. Governing for ‘no net loss’ of biodiversity over the long term: challenges and pathways forward. One Earth 4, 60–74 (2021).

    Article 

    Google Scholar
     

  • Walker, S., Brower, A. L., Stephens, R. & Lee, W. G. Why bartering biodiversity fails. Conserv. Lett. 2, 149–157 (2009).

    Article 

    Google Scholar
     

  • Carver, L. & Sullivan, S. How economic contexts shape calculations of yield in biodiversity offsetting. Conserv. Biol. 31, 1053–1065 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • zu Ermgassen, S. O. S. E. et al. The hidden biodiversity risks of increasing flexibility in biodiversity offset trades. Biol. Conserv. 252, 108861 (2020).

    Article 

    Google Scholar
     

  • Evans, M. C. Backloading to extinction: coping with values conflict in the administration of Australia’s federal biodiversity offset policy. Aust. J. Public Adm. 82, 228–247 (2023).

    Article 

    Google Scholar
     

  • Dal Bó, E. Regulatory capture: a review. Oxf. Rev. Econ. Policy 22, 203–225 (2006).

    Article 

    Google Scholar
     

  • Macintosh, A. et al. Non-compliance and under-performance in Australian human-induced regeneration projects. Rangel. J. 46, RJ24024 (2024).

    Article 

    Google Scholar
     

  • Swinfield, T. & Balmford, A. Cambridge Carbon Impact: evaluating carbon credit claims and co-benefits. Preprint at Cambridge Open Engage https://doi.org/10.33774/coe-2023-bl26j (2023).

  • Wauchope, H. S. et al. What is a unit of nature? Measurement challenges in the emerging biodiversity credit market. Proc. R. Soc. B 291, 20242353 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, J., Cain, M., Pierrehumbert, R. & Allen, M. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 15, 044023 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, K. H., de Vries, F. P., Dallimer, M., Armsworth, P. R. & Hanley, N. Ecological and economic implications of alternative metrics in biodiversity offset markets. Conserv. Biol. 36, e13906 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salzman, J. & Ruhl, J. Currencies and the commodification of environmental law. Stanf. Law Rev. 53, 607–694 (2000).

    Article 

    Google Scholar
     

  • Robertson, M. M. The nature that capital can see: science, state, and market in the commodification of ecosystem services. Environ. Plan. D 24, 367–387 (2006).

    Article 

    Google Scholar
     

  • Lave, R., Doyle, M. & Robertson, M. Privatizing stream restoration in the US. Soc. Stud. Sci. 40, 677–703 (2010).

    Article 

    Google Scholar
     

  • Robertson, M., Lave, R. & Doyle, M. Making a market in environmental credits I: streams of value. Environ. Plan. E 6, 2516–2538 (2023).


    Google Scholar
     

  • Duffus, N. E. et al. A globally influential area-condition metric is a poor proxy for invertebrate biodiversity. J. Appl. Ecol. 62, 2529–2540 (2025).

    Article 

    Google Scholar
     

  • Marshall, C. A. et al. England’s statutory biodiversity metric enhances plant, but not bird nor butterfly, biodiversity. J. Appl. Ecol. 61, 1918–1931 (2024).

    Article 

    Google Scholar
     

  • Gamarra, M. J. C. & Toombs, T. P. Thirty years of species conservation banking in the US: comparing policy to practice. Biol. Conserv. 214, 6–12 (2017).

    Article 

    Google Scholar
     

  • Moilanen, A. et al. Monitoring in biodiversity offsetting. Glob. Ecol. Conserv. 54, e03039 (2024).


    Google Scholar
     

  • Inkinen, V. Wetland Mitigation Banking in the United States. Doctoral thesis, Univ. of Gothenburg (2023).

  • Mayfield, H. J. et al. Guidelines for selecting an appropriate currency in biodiversity offset transactions. J. Environ. Manage. 322, 116060 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Dorrough, J., Sinclair, S. J. & Oliver, I. Expert predictions of changes in vegetation condition reveal perceived risks in biodiversity offsetting. PLoS ONE 14, e0216703 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibbons, P., Macintosh, A., Constable, A. L. & Hayashi, K. Outcomes from 10 years of biodiversity offsetting. Glob. Change Biol. 24, e643–e654 (2018).

    Article 

    Google Scholar
     

  • Pascoe, S., Cannard, T. & Steven, A. Offset payments can reduce environmental impacts of urban development. Environ. Sci. Policy 100, 205–210 (2019).

    Article 

    Google Scholar
     

  • Defra. Nature Markets: A Framework for Scaling Up Private Investment in Nature Recovery and Sustainable Farming (Defra, 2023).

  • Li, L. & Zhang, D. Forest carbon offset protocols in compliance carbon markets. For. Policy Econ. 165, 103253 (2024).

    Article 

    Google Scholar
     

  • Akerlof, G. A. in Uncertainty in Economics (eds Diamond, P. & Rothschild, M.) 235–251 (Elsevier, 1978).

  • Jack, B. K. & Jayachandran, S. Self-selection into payments for ecosystem services programs. Proc. Natl Acad. Sci. USA 116, 5326–5333 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Engert, J. E. & van Oosterzee, P. Limits to the ability of carbon farming projects to deliver benefits for threatened species. Nat. Ecol. Evol. 9, 134–141 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • zu Ermgassen, S. O. S. E. et al. Evaluating the impact of biodiversity offsetting on native vegetation. Glob. Change Biol. 29, 4397–4411 (2023).

    Article 

    Google Scholar
     

  • Macintosh, A. et al. Australian human-induced native forest regeneration carbon offset projects have limited impact on changes in woody vegetation cover and carbon removals. Commun. Earth Environ. 5, 149 (2024).

    Article 

    Google Scholar
     

  • Sonter, L. J., Barnes, M., Matthews, J. W. & Maron, M. Quantifying habitat losses and gains made by US Species Conservation Banks to improve compensation policies and avoid perverse outcomes. Conserv. Lett. 12, e12629 (2019).

    Article 

    Google Scholar
     

  • Badgley, G. et al. Systematic over-crediting in California’s forest carbon offsets program. Glob. Change Biol. 28, 1433–1445 (2022).

    Article 

    Google Scholar
     

  • Coffield, S. R. et al. Using remote sensing to quantify the additional climate benefits of California forest carbon offset projects. Glob. Change Biol. 28, 6789–6806 (2022).

    Article 

    Google Scholar
     

  • Stanley, T. & Cusworth, G. Legitimacy in the making: conservatism, additionality and natural capital accreditation in the UK’s Woodland Carbon Code. Environ. Plan. E 8, 2018–2037 (2025).


    Google Scholar
     

  • Maseyk, F. J., Maron, M., Gordon, A., Bull, J. W. & Evans, M. C. Improving averted loss estimates for better biodiversity outcomes from offset exchanges. Oryx 55, 393–403 (2020).

    Article 

    Google Scholar
     

  • Mitchell, E. et al. Making soil carbon credits work for climate change mitigation. Carbon Manage. 15, 2430780 (2024).


    Google Scholar
     

  • Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Guizar-Coutiño, A., Jones, J. P., Balmford, A., Carmenta, R. & Coomes, D. A. A global evaluation of the effectiveness of voluntary REDD+ projects at reducing deforestation and degradation in the moist tropics. Conserv. Biol. 36, e13970 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delacote, P. et al. Restoring credibility in carbon offsets through systematic ex post evaluation. Nat. Sustain. 8, 733–740 (2025).

    Article 

    Google Scholar
     

  • Rau, E. P. et al. Strengthening the integrity of REDD+ credits: objectively assessing counterfactual methods using placebos. Environ. Res. Lett. 20, 114051 (2025).

    Article 

    Google Scholar
     

  • Isometric. Reforestation protocol. isometric.com https://registry.isometric.com/protocol/reforestation/1.0 (2025).

  • Verra. VM0047 Afforestation, Reforestation, and Revegetation v.1.1. verra.org https://verra.org/methodologies/vm0047-afforestation-reforestation-and-revegetation-v1-1/ (2025).

  • Revalue. Our models. revalue.earth https://www.revalue.earth/our-models/avoid (2025).

  • Balmford, A. et al. Time to fix the biodiversity leak. Science 387, 720–722 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Change 53, 52–67 (2018).

    Article 

    Google Scholar
     

  • Meyfroidt, P. et al. Ten facts about land systems for sustainability. Proc. Natl Acad. Sci. USA 119, e2109217118 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filewod, B. & McCarney, G. Avoiding carbon leakage from nature-based offsets by design. One Earth 6, 790–802 (2023).

    Article 

    Google Scholar
     

  • Swinfield, T. & Toye Scott, E. Scientific credibility for high-integrity voluntary carbon markets. Preprint at Cambridge Open Engage https://doi.org/10.33774/coe-2025-f0j70-v2 (2025).

  • Cerullo, G. et al. The global impact of EU forest protection policies. Science 381, 740 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kujala, H. et al. Credible biodiversity offsetting needs public national registers to confirm no net loss. One Earth 5, 650–662 (2022).

    Article 

    Google Scholar
     

  • Delacote, P. et al. Strong transparency required for carbon credit mechanisms. Nat. Sustain. 7, 706–713 (2024).

    Article 

    Google Scholar
     

  • Poudel, J., Zhang, D. & Simon, B. Estimating the demand and supply of conservation banking markets in the United States. Land Use Policy 79, 320–325 (2018).

    Article 

    Google Scholar
     

  • Clean Energy Regulator. Third independent review of human-induced regeneration gateway checks. cer.gov.au https://cer.gov.au/news-and-media/news/2024/december/third-independent-review-human-induced-regeneration-gateway-checks (2024).

  • Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bennett, M. M., Chen, J. K., Alvarez Leon, L. F. & Gleason, C. J. The politics of pixels: a review and agenda for critical remote sensing. Prog. Hum. Geogr. 46, 729–752 (2022).

    Article 

    Google Scholar
     

  • Bos, A. B. et al. Global data and tools for local forest cover loss and REDD+ performance assessment: accuracy, uncertainty, complementarity and impact. Int. J. Appl. Earth Obs. Geoinf. 80, 295–311 (2019).


    Google Scholar
     

  • Vatn, A. Markets in environmental governance: from theory to practice. Ecol. Econ. 117, 225–233 (2015).

    Article 

    Google Scholar
     

  • Lederer, M. Market making via regulation: the role of the state in carbon markets. Regul. Gov. 6, 524–544 (2012).

    Article 

    Google Scholar
     

  • Clare, S. & Krogman, N. Bureaucratic slippage and environmental offset policies: the case of wetland management in Alberta. Soc. Nat. Resour. 26, 672–687 (2013).

    Article 

    Google Scholar
     

  • Macintosh, A. et al. Reply to: National-scale datasets underestimate vegetation recovery in Australian human-induced native forest regeneration carbon sequestration projects. Commun. Earth Environ. 6, 803 (2025).

    Article 

    Google Scholar
     

  • ICVCM. The Core Carbon Principles. icvcm.org https://icvcm.org/core-carbon-principles/ (2024).

  • Laitila, J., Moilanen, A. & Pouzols, F. M. A method for calculating minimum biodiversity offset multipliers accounting for time discounting, additionality and permanence. Methods Ecol. Evol. 5, 1247–1254 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaissière, A.-C., Tardieu, L., Quétier, F. & Roussel, S. Preferences for biodiversity offset contracts on arable land: a choice experiment study with farmers. Eur. Rev. Agric. Econ. 45, 553–582 (2018).

    Article 

    Google Scholar
     

  • Theis, S. & Poesch, M. Mitigation bank applications for freshwater systems: control mechanisms, project complexity, and caveats. PLoS ONE 19, e0292702 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, M., Galatowitsch, S. M. & Matthews, J. W. Longitudinal evaluation of vegetation richness and cover at wetland compensation sites: implications for regulatory monitoring under the Clean Water Act. Wetl. Ecol. Manage. 26, 1089–1105 (2018).

    Article 

    Google Scholar
     

  • Reed, M. S., McCarthy, J. M., Jensen, E. A., Everett, R. & Rudman, H. Governing high-integrity markets for ecosystem services. Ecosystem Services 75, 101760 (2025).

    Article 

    Google Scholar
     

  • Sax, J. L. Defending the Environment: A Strategy for Citizen Action (Knopf, 1971).

  • Macintosh, A., Gibbons, P., Jones, J., Constable, A. & Wilkinson, D. Delays, stoppages and appeals: an empirical evaluation of the adverse impacts of environmental citizen suits in the New South Wales land and environment court. Environ. Impact Assess. Rev. 69, 94–103 (2018).

    Article 

    Google Scholar
     

  • Theis, S. et al. Compliance with and ecosystem function of biodiversity offsets in North American and European freshwaters. Conserv. Biol. 34, 41–53 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Guizar-Coutiño, A., Coomes, D., Swinfield, T. & Jones, J. P. Sensitivity of estimates of the effectiveness of REDD+ projects to matching specifications and moving from pixels to polygons as the unit of analysis. Preprint at bioRxiv https://doi.org/10.1101/2024.05.22.595326 (2024).

  • Wunder, S. et al. Modest forest and welfare gains from initiatives for reduced emissions from deforestation and forest degradation. Commun. Earth Environ. 5, 394 (2024).

    Article 

    Google Scholar
     

  • Busch, J. & Ferretti-Gallon, K. What drives and stops deforestation, reforestation, and forest degradation? An updated meta-analysis. Rev. Environ. Econ. Policy 17, 217–250 (2023).

    Article 

    Google Scholar
     

  • Spash, C. L. Bulldozing biodiversity: the economics of offsets and trading-in Nature. Biol. Conserv. 192, 541–551 (2015).

    Article 

    Google Scholar
     

  • Simmonds, J. S. et al. Aligning ecological compensation policies with the Post-2020 Global Biodiversity Framework to achieve real net gain in biodiversity. Conserv. Sci. Pract. 4, e12634 (2022).

    Article 

    Google Scholar
     

  • Dempsey, J. et al. Biodiversity targets will not be met without debt and tax justice. Nat. Ecol. Evol. 6, 237–239 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Galaz, V. et al. Tax havens and global environmental degradation. Nat. Ecol. Evol. 2, 1352–1357 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Svartzman, R. & Althouse, J. Greening the international monetary system? Not without addressing the political ecology of global imbalances. Rev. Int. Polit. Econ. 29, 844–869 (2022).

    Article 

    Google Scholar
     

  • Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5 and 2 C climate change targets. Science 370, 705–708 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gonon, M. et al. Subsidies against Nature: a multidimensional framework for biodiversity-aligned national budgets. Ecol. Econ. 235, 108661 (2025).

    Article 

    Google Scholar
     

  • Bruner, A. G., Gullison, R. E. & Balmford, A. Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. BioScience 54, 1119–1126 (2004).

    Article 

    Google Scholar
     

  • Wunder, S. et al. Biodiversity credits: an overview of the current state, future opportunities, and potential pitfalls. Bus. Strategy Environ. 34, 8470–8499 (2025).

    Article 

    Google Scholar
     

  • Atmadja, S. S. et al. How do REDD+ projects contribute to the goals of the Paris Agreement?. Environ. Res. Lett. 17, 044038 (2022).

    Article 

    Google Scholar
     

  • Calvet, C., Le Coent, P., Napoleone, C. & Quétier, F. Challenges of achieving biodiversity offset outcomes through agri-environmental schemes: evidence from an empirical study in Southern France. Ecol. Econ. 163, 113–125 (2019).

    Article 

    Google Scholar
     

  • Grimm, M. Conserving biodiversity through offsets? Findings from an empirical study on conservation banking. J. Nat. Conserv. 57, 125871 (2020).

    Article 

    Google Scholar
     

  • Fox, J. & Murcia, A. Status of species conservation banking in the United States. Conserv. Biol. 19, 996–1007 (2005).

    Article 

    Google Scholar
     

  • Randazzo, N. A., Gordon, D. R. & Hamburg, S. P. Improved assessment of baseline and additionality for forest carbon crediting. Ecol. Appl. 33, e2817 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Stapp, J. et al. Little evidence of management change in California’s forest offset program. Commun. Earth Environ. 4, 331 (2023).

    Article 

    Google Scholar
     

  • West, T. A., Börner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117, 24188–24194 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haya, B. K. et al. Comprehensive review of carbon quantification by improved forest management offset protocols. Front. Forests Global Change 6, 958879 (2023).

    Article 

    Google Scholar
     

  • Karnik, A., Kilbride, J. B., Goodbody, T. R., Ross, R. & Ayrey, E. An open-access database of nature-based carbon offset project boundaries. Sci. Data 12, 581 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Department of Environment, Land, Water and Planning. Native Vegetation Gain Scoring Manual (Department of Environment, Land, Water and Planning, 2017).

  • Department of Environment, Land, Water and Planning. Guidelines for the Removal, Destruction or Lopping of Native Vegetation (Department of Environment, Land, Water and Planning, 2017).