• Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).


    Google Scholar
     

  • García-García, M. J. in Animal Models of Human Birth Defects (ed. Liu, A.) 1–38 (Springer, 2020).

  • Patton, E. E. & Zon, L. I. The art and design of genetic screens: zebrafish. Nat. Rev. Genet. 2, 956–966 (2001).

    CAS 

    Google Scholar
     

  • St Johnston, D. The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3, 176–188 (2002).


    Google Scholar
     

  • Kile, B. T. & Hilton, D. J. The art and design of genetic screens: mouse. Nat. Rev. Genet. 6, 557–567 (2005).

    CAS 

    Google Scholar
     

  • Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9, 554–566 (2008).

    CAS 

    Google Scholar
     

  • Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    CAS 

    Google Scholar
     

  • Nakamura, M., Gao, Y., Dominguez, A. A. & Qi, L. S. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 23, 11–22 (2021).

    CAS 

    Google Scholar
     

  • Villiger, L. et al. CRISPR technologies for genome, epigenome and transcriptome editing. Nat. Rev. Mol. Cell Biol. 25, 464–487 (2024).

    CAS 

    Google Scholar
     

  • Evers, B. et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34, 631–633 (2016).

    CAS 

    Google Scholar
     

  • Michels, B. E. et al. Pooled in vitro and in vivo CRISPR–Cas9 screening identifies tumor suppressors in human colon organoids. Cell Stem Cell 26, 782–792.e7 (2020).

    CAS 

    Google Scholar
     

  • Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

    CAS 

    Google Scholar
     

  • Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    CAS 

    Google Scholar
     

  • Li, C. et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature 621, 373–380 (2023).

    CAS 

    Google Scholar
     

  • Fleck, J. S. et al. Inferring and perturbing cell fate regulomes in human brain organoids. Nature 621, 365–372 (2023).

    CAS 

    Google Scholar
     

  • Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Prim. 2022 2:1 2, 1–23 (2022). This review summarizes the use of CRISPR tools for pooled genetic screening.


    Google Scholar
     

  • Cunningham, D. & You, Z. In vitro and in vivo model systems used in prostate cancer research. J. Biol. Methods 2, e17 (2015).


    Google Scholar
     

  • Kipp, M. et al. Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Mult. Scler. Relat. Disord. 1, 15–28 (2012).


    Google Scholar
     

  • Miller, T. E. et al. Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature 547, 355–359 (2017).

    CAS 

    Google Scholar
     

  • Zhao, H. et al. Genome-wide fitness gene identification reveals Roquin as a potent suppressor of CD8 T cell expansion and anti-tumor immunity. Cell Rep. 37, 110083 (2021).

    CAS 

    Google Scholar
     

  • Zhu, X. G. et al. Functional genomics in vivo reveal metabolic dependencies of pancreatic cancer cells. Cell Metab. 33, 211–221.e6 (2021).

    CAS 

    Google Scholar
     

  • Mercier, F. E. et al. In vivo genome-wide CRISPR screening in murine acute myeloid leukemia uncovers microenvironmental dependencies. Blood Adv. 6, 5072–5084 (2022).

    CAS 

    Google Scholar
     

  • Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    CAS 

    Google Scholar
     

  • Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    CAS 

    Google Scholar
     

  • Wuestefeld, T. et al. A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell 153, 389–401 (2013).

    CAS 

    Google Scholar
     

  • Miller, P. G. et al. In vivo RNAi screening identifies a leukemia-specific dependence on integrin β3 signaling. Cancer Cell 24, 45–58 (2013).

    CAS 

    Google Scholar
     

  • Beronja, S. et al. RNAi screens in mice identify physiological regulators of oncogenic growth. Nature 501, 185–190 (2013).

    CAS 

    Google Scholar
     

  • Morris, J. A., Sun, J. S. & Sanjana, N. E. Next-generation forward genetic screens: uniting high-throughput perturbations with single-cell analysis. Trends Genet. 40, 118–133 (2024).

    CAS 

    Google Scholar
     

  • Thyme, S. B. et al. Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions. Cell 177, 478–491.e20 (2019).

    CAS 

    Google Scholar
     

  • Meltzer, H. et al. Tissue-specific (ts)CRISPR as an efficient strategy for in vivo screening in Drosophila. Nat. Commun. 10, 2113 (2019).


    Google Scholar
     

  • Wang, Y. et al. Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages. Nat. Commun. 11, 5258 (2020).

    CAS 

    Google Scholar
     

  • Tachibana, Y., Hashizaki, E., Sasai, M. & Yamamoto, M. Host genetics highlights IFN-γ-dependent Toxoplasma genes encoding secreted and non-secreted virulence factors in in vivo CRISPR screens. Cell Rep. 42, 112592 (2023).

    CAS 

    Google Scholar
     

  • Hansen, S. L. et al. An organoid-based CRISPR–Cas9 screen for regulators of intestinal epithelial maturation and cell fate. Sci. Adv. 9, eadg4055 (2023).

    CAS 

    Google Scholar
     

  • Geurts, M. H. & Clevers, H. CRISPR engineering in organoids for gene repair and disease modelling. Nat. Rev. Bioeng. 1, 32–45 (2023).

    CAS 

    Google Scholar
     

  • Pandelakis, M., Delgado, E. & Ebrahimkhani, M. R. CRISPR-based synthetic transcription factors in vivo: the future of therapeutic cellular programming. Cell Syst. 10, 1–14 (2020).

    CAS 

    Google Scholar
     

  • Bowling, S. et al. An engineered CRISPR–Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 181, 1410–1422.e27 (2020).

    CAS 

    Google Scholar
     

  • Li, L. et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell 186, 5183–5199.e22 (2023).

    CAS 

    Google Scholar
     

  • Liu, B. et al. Large-scale multiplexed mosaic CRISPR perturbation in the whole organism. Cell 185, 3008–3024.e16 (2022).

    CAS 

    Google Scholar
     

  • Braun, C. J., Adames, A. C., Saur, D. & Rad, R. Tutorial: design and execution of CRISPR in vivo screens. Nat. Protoc. 17, 1903–1925 (2022).

    CAS 

    Google Scholar
     

  • Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    CAS 

    Google Scholar
     

  • Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Genome-wide CRISPR/Cas9 screening for drug resistance in tumors. Front. Pharmacol. 14, 1284610 (2023).

    CAS 

    Google Scholar
     

  • Chow, R. D. & Chen, S. Cancer CRISPR screens. Vivo. Trends Cancer 4, 349–358 (2018).

    CAS 

    Google Scholar
     

  • Rodriguez-Fraticelli, A. E. et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 583, 585–589 (2020).

    CAS 

    Google Scholar
     

  • Lara-Astiaso, D. et al. In vivo screening characterizes chromatin factor functions during normal and malignant hematopoiesis. Nat. Genet. 55, 1542–1554 (2023).

    CAS 

    Google Scholar
     

  • Tran, N. T. et al. In vivo CRISPR/Cas9-mediated screen reveals a critical function of TFDP1 and E2F4 transcription factors in hematopoiesis. Leukemia 38, 2003–2015 (2024).

    CAS 

    Google Scholar
     

  • Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204.e23 (2019).

    CAS 

    Google Scholar
     

  • Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    CAS 

    Google Scholar
     

  • Huang, H. et al. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ T cell fate decisions. Cell 184, 1245–1261.e21 (2021).

    CAS 

    Google Scholar
     

  • Chen, Z. et al. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184, 1262–1280.e22 (2021).

    CAS 

    Google Scholar
     

  • Belk, J. A. et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40, 768–786.e7 (2022).

    CAS 

    Google Scholar
     

  • Baxter, A. E. et al. The SWI/SNF chromatin remodeling complexes BAF and PBAF differentially regulate epigenetic transitions in exhausted CD8+ T cells. Immunity 56, 1320–1340.e10 (2023).

    CAS 

    Google Scholar
     

  • Zhou, P. et al. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature 624, 154–163 (2023).

    CAS 

    Google Scholar
     

  • Sutra Del Galy, A. et al. In vivo genome-wide CRISPR screens identify SOCS1 as intrinsic checkpoint of CD4+ TH1 cell response. Sci. Immunol. 6, eabe8219 (2021).


    Google Scholar
     

  • Kendirli, A. et al. A genome-wide in vivo CRISPR screen identifies essential regulators of T cell migration to the CNS in a multiple sclerosis model. Nat. Neurosci. 26, 1713–1725 (2023).

    CAS 

    Google Scholar
     

  • Huang, B. et al. In vivo CRISPR screens reveal a HIF-1α–mTOR-network regulates T follicular helper versus TH1 cells. Nat. Commun. 13, 805 (2022).

    CAS 

    Google Scholar
     

  • Peng, L. et al. In vivo AAV–SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy. Nat. Biotechnol. 43, 752–761 (2025).

    CAS 

    Google Scholar
     

  • Fu, G. et al. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature 595, 724–729 (2021).

    CAS 

    Google Scholar
     

  • Zhou, W., Gao, F., Romero-Wolf, M., Jo, S. & Rothenberg, E. V. Single-cell deletion analyses show control of pro-T cell developmental speed and pathways by Tcf7, Spi1, Gata3, Bcl11a, Erg, and Bcl11b. Sci. Immunol. 7, eabm1920 (2022).

    CAS 

    Google Scholar
     

  • LaFleur, M. W. et al. A CRISPR–Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10, 1668 (2019).


    Google Scholar
     

  • Cai, E. P. et al. Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes. Nat. Metab. 2, 934–945 (2020).

    CAS 

    Google Scholar
     

  • Sintov, E. et al. Whole-genome CRISPR screening identifies genetic manipulations to reduce immune rejection of stem cell-derived islets. Stem Cell Rep. 17, 1976–1990 (2022).

    CAS 

    Google Scholar
     

  • Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    CAS 

    Google Scholar
     

  • Nguyen, L. V. et al. DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nat. Commun. 5, 5871 (2014).

    CAS 

    Google Scholar
     

  • Michlits, G. et al. CRISPR-UMI: single-cell lineage tracing of pooled CRISPR–Cas9 screens. Nat. Methods 14, 1191–1197 (2017).

    CAS 

    Google Scholar
     

  • Merino, D. et al. Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nat. Commun. 10, 766 (2019).

    CAS 

    Google Scholar
     

  • Eirew, P. et al. Accurate determination of CRISPR-mediated gene fitness in transplantable tumours. Nat. Commun. 13, 4534 (2022).

    CAS 

    Google Scholar
     

  • Rogers, Z. N. et al. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat. Methods 14, 737–742 (2017).

    CAS 

    Google Scholar
     

  • Schmierer, B. et al. CRISPR/Cas9 screening using unique molecular identifiers. Mol. Syst. Biol. 13, 945 (2017).


    Google Scholar
     

  • Esk, C. et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 370, 935–941 (2020).

    CAS 

    Google Scholar
     

  • Uijttewaal, E. C. H. et al. CRISPR–StAR enables high-resolution genetic screening in complex in vivo models. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02512-9 (2024).

  • Shirley, J. L., de Jong, Y. P., Terhorst, C. & Herzog, R. W. Immune responses to viral gene therapy vectors. Mol. Ther. 28, 709–722 (2020).

    CAS 

    Google Scholar
     

  • Weber, J. et al. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc. Natl Acad. Sci. USA 112, 13982–13987 (2015).

    CAS 

    Google Scholar
     

  • Xu, C. et al. piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice. Proc. Natl Acad. Sci. USA 114, 722–727 (2017).

    CAS 

    Google Scholar
     

  • Wang, G. et al. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV–CRISPR-mediated direct in vivo screening. Sci. Adv. 4, eaao5508 (2018). This article demonstrates the use of molecular inversion probes.


    Google Scholar
     

  • Wangensteen, K. J. et al. Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platform. Hepatology 68, 663–676 (2018).

    CAS 

    Google Scholar
     

  • Wang, G. et al. CRISPR–GEMM pooled mutagenic screening identifies KMT2D as a major modulator of immune checkpoint blockade. Cancer Discov. 10, 1912–1933 (2020).

    CAS 

    Google Scholar
     

  • Keys, H. R. & Knouse, K. A. Genome-scale CRISPR screening in a single mouse liver. Cell Genomics 2, 100217 (2022).

    CAS 

    Google Scholar
     

  • Jia, Y. et al. In vivo CRISPR screening identifies BAZ2 chromatin remodelers as druggable regulators of mammalian liver regeneration. Cell Stem Cell 29, 372–385.e8 (2022).

    CAS 

    Google Scholar
     

  • Wang, Z. et al. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. Cell 186, 1968–1984.e20 (2023).

    CAS 

    Google Scholar
     

  • Chen, Y. et al. Acute liver steatosis translationally controls the epigenetic regulator MIER1 to promote liver regeneration in a study with male mice. Nat. Commun. 14, 1521 (2023).

    CAS 

    Google Scholar
     

  • Borrelli, C. et al. In vivo interaction screening reveals liver-derived constraints to metastasis. Nature 632, 411–418 632 (2024). This study highlights in vivo CRISPR screens to probe cell–cell interactions; the study combines direct in vivo CRISPRa screening in liver hepatocytes with a xenograft tumour model.

    CAS 

    Google Scholar
     

  • Chow, R. D. et al. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat. Neurosci. 20, 1329–1341 (2017). This study demonstrates the use of target-capture probes.

    CAS 

    Google Scholar
     

  • Jin, X. et al. In vivo Perturb-seq reveals neuronal and glial abnormalities associated with autism risk genes. Science 370, eaaz6063 (2020). This article describes the application of Perturb-seq in utero to study autism spectrum disorder-related genes.

    CAS 

    Google Scholar
     

  • Wertz, M. H. et al. Genome-wide in vivo CNS screening identifies genes that modify CNS neuronal survival and mHTT toxicity. Neuron 106, 76–89.e8 (2020). This paper reports a non-liver genome-scale depletion screen and discusses inconsistencies with shRNA screens and challenges of scale.

    CAS 

    Google Scholar
     

  • Santinha, A. J. et al. Transcriptional linkage analysis with in vivo AAV-Perturb-seq. Nature 622, 367–375 (2023). This paper introduces AAV-Perturb-seq for direct in vivo single-cell CRISPR screens in adult animals.

    CAS 

    Google Scholar
     

  • Zheng, X. et al. Massively parallel in vivo Perturb-seq reveals cell-type-specific transcriptional networks in cortical development. Cell 187, 3236–3248.e21 (2024).

    CAS 

    Google Scholar
     

  • Ruetz, T. J. et al. CRISPR–Cas9 screens reveal regulators of ageing in neural stem cells. Nature 634, 1150–1159 (2024). This article describes an in vivo CRISPR screen that provides insight into cell migration in a non-tumour model

    CAS 

    Google Scholar
     

  • Dervovic, D. et al. In vivo CRISPR screens reveal Serpinb9 and Adam2 as regulators of immune therapy response in lung cancer. Nat. Commun. 14, 3150 (2023).

    CAS 

    Google Scholar
     

  • Tang, R. et al. Multiplexed screens identify RAS paralogues HRAS and NRAS as suppressors of KRAS-driven lung cancer growth. Nat. Cell Biol. 25, 159–169 (2023).

    CAS 

    Google Scholar
     

  • Maresch, R. et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat. Commun. 7, 10770 (2016).

    CAS 

    Google Scholar
     

  • Martinez, S. et al. In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer. Nat. Commun. 15, 5266 (2024).

    CAS 

    Google Scholar
     

  • VanDusen, N. J. et al. Massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nat. Commun. 12, 4442 (2021).

    CAS 

    Google Scholar
     

  • Noguchi, Y. et al. In vivo CRISPR screening directly targeting testicular cells. Cell Genomics 4, 100510 (2024).

    CAS 

    Google Scholar
     

  • Loganathan, S. K. et al. Rare driver mutations in head and neck squamous cell carcinomas converge on NOTCH signaling. Science 367, 1264–1269 (2020).

    CAS 

    Google Scholar
     

  • Renz, P. F. et al. In vivo single-cell CRISPR uncovers distinct TNF programmes in tumour evolution. Nature 632, 419–428 (2024).

    CAS 

    Google Scholar
     

  • Langille, E. et al. Loss of epigenetic regulation disrupts lineage integrity, induces aberrant alveogenesis, and promotes breast cancer. Cancer Discov. 12, 2930–2953 (2022).

    CAS 

    Google Scholar
     

  • Schramek, D. et al. Aneuploidy drives the acquisition of cancer-specific driver genes. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-4941895/v1 (2024).

  • Li, J. et al. Epigenetic and transcriptional control of the epidermal growth factor receptor regulates the tumor immune microenvironment in pancreatic cancer. Cancer Discov. 11, 736–753 (2021).


    Google Scholar
     

  • Dubrot, J. et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat. Immunol. 23, 1495–1506 (2022).

    CAS 

    Google Scholar
     

  • Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    CAS 

    Google Scholar
     

  • Li, F. et al. In vivo epigenetic CRISPR screen identifies asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma. Cancer Discov. 10, 270–287 (2020).


    Google Scholar
     

  • Griffin, G. K. et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 595, 309–314 (2021).

    CAS 

    Google Scholar
     

  • Tang, K. et al. Cas12a-knock-in mice for multiplexed genome editing, disease modelling and immune-cell engineering. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-025-01371-2 (2025).

  • Katti, A. et al. Generation of precision preclinical cancer models using regulated in vivo base editing. Nat. Biotechnol. 42, 437–447 (2024).

    CAS 

    Google Scholar
     

  • Ely, Z. A. et al. A prime editor mouse to model a broad spectrum of somatic mutations in vivo. Nat. Biotechnol. 42, 424–436 (2024).

    CAS 

    Google Scholar
     

  • An, M. et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat. Biotechnol. 42, 1526–1537 (2024).

    CAS 

    Google Scholar
     

  • Ogden, P. J., Kelsic, E. D., Sinai, S. & Church, G. M. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366, 1139–1143 (2019).

    CAS 

    Google Scholar
     

  • Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    CAS 

    Google Scholar
     

  • Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS One 13, e0209648 (2018).


    Google Scholar
     

  • Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    CAS 

    Google Scholar
     

  • Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling pool. genet. screens. Cell 167, 1853–1866.e17 (2016).

    CAS 

    Google Scholar
     

  • Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896.e15 (2016).

    CAS 

    Google Scholar
     

  • Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    CAS 

    Google Scholar
     

  • Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299.e5 (2017).

    CAS 

    Google Scholar
     

  • Schraivogel, D. et al. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat. Methods 17, 629–635 (2020).

    CAS 

    Google Scholar
     

  • Liscovitch-Brauer, N. et al. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens. Nat. Biotechnol. 39, 1270–1277 (2021).

    CAS 

    Google Scholar
     

  • Pierce, S. E., Granja, J. M. & Greenleaf, W. J. High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. Nat. Commun. 12, 2969 (2021).

    CAS 

    Google Scholar
     

  • Rubin, A. J. et al. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell 176, 361–376.e17 (2019).

    CAS 

    Google Scholar
     

  • Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    CAS 

    Google Scholar
     

  • Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).

    CAS 

    Google Scholar
     

  • Wroblewska, A. et al. Protein barcodes enable high-dimensional single-cell CRISPR screens. Cell 175, 1141–1155.e16 (2018).

    CAS 

    Google Scholar
     

  • Li, K., Ouyang, M., Zhan, J. & Tian, R. CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types. Cell Genomics 3, 100300 (2023).

    CAS 

    Google Scholar
     

  • Alda-Catalinas, C. et al. A single-cell transcriptomics CRISPR-activation screen identifies epigenetic regulators of the zygotic genome activation program. cels 11, 25–41.e9 (2020).

    CAS 

    Google Scholar
     

  • Guo, Y. & Zhao, X. CRISPR-based genetic screens in human pluripotent stem cells derived neurons and brain organoids. Cell Tissue Res. 399, 1–8 (2025).


    Google Scholar
     

  • Wang, D. et al. CRISPR screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 11, 1192–1211 (2021).

    CAS 

    Google Scholar
     

  • Wang, W. & Wang, X. Single-cell CRISPR screening in drug resistance. Cell Biol. Toxicol. 33, 207–210 (2017).

    CAS 

    Google Scholar
     

  • Binan, L. et al. Simultaneous CRISPR screening and spatial transcriptomics reveal intracellular, intercellular, and functional transcriptional circuits. Cell 188, 2141–2158.e18 (2025).

    CAS 

    Google Scholar
     

  • Feldman, D. et al. Optical pooled screens in human Cells. Cell 179, 787–799.e17 (2019).

    CAS 

    Google Scholar
     

  • Saunders, R. A. et al. Perturb-Multimodal: a platform for pooled genetic screens with imaging and sequencing in intact mammalian tissue. Cell https://doi.org/10.1016/j.cell.2025.05.022 (2025)

  • Baysoy, A. et al. Spatially resolved in vivo CRISPR screen sequencing via perturb-DBiT. Preprint at bioRxiv https://doi.org/10.1101/2024.11.18.624106 (2024).

  • Kudo, T. et al. Multiplexed, image-based pooled screens in primary cells and tissues with PerturbView. Nat. Biotechnol. 43, 1091–1100 (2025). This study implements the T7 promoter for robust in situ gRNA detection in spatial screens.

    CAS 

    Google Scholar
     

  • Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022). This article describes a spatial screen and introduces ProCodes for reading perturbations with multiplex protein imaging.

    CAS 

    Google Scholar
     

  • Mollaoglu, G. et al. Ovarian cancer-derived IL-4 promotes immunotherapy resistance. Cell 187, 7492–7510.e22 (2024).

    CAS 

    Google Scholar
     

  • Behr, M., Zhou, J., Xu, B. & Zhang, H. In vivo delivery of CRISPR–Cas9 therapeutics: progress and challenges. Acta Pharm. Sin. B 11, 2150–2171 (2021).

    CAS 

    Google Scholar
     

  • Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014). This study produced the first mice carrying a knock-in allele of a Cas effector protein.

    CAS 

    Google Scholar
     

  • Chu, V. T. et al. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol. 16, 4 (2016).


    Google Scholar
     

  • Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).

    CAS 

    Google Scholar
     

  • Li, K. et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 11, 485 (2020).


    Google Scholar
     

  • Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nat. Neurosci. 21, 440–446 (2018).

    CAS 

    Google Scholar
     

  • Li, J., Zhu, D., Hu, S. & Nie, Y. CRISPR–CasRx knock-in mice for RNA degradation. Sci. China Life Sci. 65, 2248–2256 (2022).

    CAS 

    Google Scholar
     

  • Wessels, H.-H. et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nat. Methods 20, 86–94 (2023).

    CAS 

    Google Scholar
     

  • Hebert, J. D. et al. Efficient and multiplexed somatic genome editing with Cas12a mice. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-025-01407-7 (2025).

  • Klingler, E. et al. Temporal controls over inter-areal cortical projection neuron fate diversity. Nature 599, 453–457 (2021).

    CAS 

    Google Scholar
     

  • Luther, D. C., Lee, Y. W., Nagaraj, H., Scaletti, F. & Rotello, V. M. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges. Expert. Opin. Drug. Deliv. 15, 905–913 (2018).

    CAS 

    Google Scholar
     

  • Wilbie, D., Walther, J. & Mastrobattista, E. Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc. Chem. Res. 52, 1555–1564 (2019).

    CAS 

    Google Scholar
     

  • Duvergé, A. & Negroni, M. Pseudotyping lentiviral vectors: when the clothes make the virus. Viruses 12, 1311 (2020).


    Google Scholar
     

  • Hindi, S. M. et al. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens target skeletal muscle for gene delivery. Cell 186, 2062–2077.e17 (2023).

    CAS 

    Google Scholar
     

  • Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug. Discov. 18, 358–378 (2019).

    CAS 

    Google Scholar
     

  • Lin, R. et al. Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nat. Methods 19, 976–985 (2022).

    CAS 

    Google Scholar
     

  • Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    CAS 

    Google Scholar
     

  • Riedmayr, L. M. et al. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat. Commun. 14, 6578 (2023).

    CAS 

    Google Scholar
     

  • Chew, W. L. et al. A multi-functional AAV–CRISPR–Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    CAS 

    Google Scholar
     

  • Ye, L. et al. In vivo CRISPR screening in CD8 T cells with AAV–sleeping beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37, 1302–1313 (2019).

    CAS 

    Google Scholar
     

  • Zengel, J. et al. Hardwiring tissue-specific AAV transduction in mice through engineered receptor expression. Nat. Methods 20, 1070–1081 (2023).

    CAS 

    Google Scholar
     

  • Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    CAS 

    Google Scholar
     

  • Chylinski, K. et al. CRISPR-switch regulates sgRNA activity by Cre recombination for sequential editing of two loci. Nat. Commun. 10, 5454 (2019).


    Google Scholar
     

  • Ramani, B. et al. CRISPR screening by AAV episome-sequencing (CrAAVe-seq) is a highly scalable cell type-specific in vivo screening platform. Preprint at bioRxiv https://doi.org/10.1101/2023.06.13.544831 (2024).

  • Lundin, A. et al. Development of an ObLiGaRe doxycycline inducible Cas9 system for pre-clinical cancer drug discovery. Nat. Commun. 11, 4903 (2020).

    CAS 

    Google Scholar
     

  • Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954–961 (2020).

    CAS 

    Google Scholar
     

  • Xu, Z., Sziraki, A., Lee, J. et al. Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. Nat. Biotechnol. 42, 1218–1223 (2024).

    CAS 

    Google Scholar
     

  • Schraivogel, D., Gschwind, A.R., Milbank, J.H. et al. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat. Methods 17, 629–635 (2020).

    CAS 

    Google Scholar
     

  • Gu, J. et al. Mapping multimodal phenotypes to perturbations in cells and tissue with CRISPRmap. Nat. Biotechnol. 43, 1101–1115 (2025).

    CAS 

    Google Scholar
     

  • Zhang, G. et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther. 11, 675–682 (2004).

    CAS 

    Google Scholar
     

  • Zhu, S. et al. Guide RNAs with embedded barcodes boost CRISPR-pooled screens. Genome Biol. 20, 20 (2019).


    Google Scholar
     

  • Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390.e19 (2019).

    CAS 

    Google Scholar
     

  • Yao, D. et al. Scalable genetic screening for regulatory circuits using compressed Perturb-seq. Nat. Biotechnol. 42, 1282–1295 (2024).

    CAS 

    Google Scholar
     

  • Huang, A. C. et al. X-Atlas/Orion: genome-wide Perturb-seq datasets via a scalable fix-cryopreserve platform for training dose-dependent biological foundation models. Preprint at bioRxiv https://doi.org/10.1101/2025.06.11.659105 (2025).

  • Replogle, J. M. et al. Mapping information-rich genotype–phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

    CAS 

    Google Scholar
     

  • Morgens, D. W. et al. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat. Commun. 8, 15178 (2017).

    CAS 

    Google Scholar
     

  • Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    CAS 

    Google Scholar
     

  • Almogy, G. et al. Cost-efficient whole genome-sequencing using novel mostly natural sequencing-by-synthesis chemistry and open fluidics platform. Preprint at bioRxiv https://doi.org/10.1101/2022.05.29.493900 (2022).

  • Kim, H. S. et al. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection. J. Biol. Chem. 292, 10664–10671 (2017).

    CAS 

    Google Scholar
     

  • Lafzi, A., Moutinho, C., Picelli, S. & Heyn, H. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat. Protoc. 13, 2742–2757 (2018).

    CAS 

    Google Scholar
     

  • Lee, D. R., Zhang, Y., Rhodes, C. T. & Petros, T. J. Generation of single-cell and single-nuclei suspensions from embryonic and adult mouse brains. Star. Protoc. 4, 101944 (2022).


    Google Scholar
     

  • Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).


    Google Scholar
     

  • Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    CAS 

    Google Scholar
     

  • Chardon, F. M. et al. Multiplex, single-cell CRISPRa screening for cell type specific regulatory elements. Nat. Commun. 15, 8209 (2024).

    CAS 

    Google Scholar
     

  • Kampmann, M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem. Biol. 13, 406–416 (2018).

    CAS 

    Google Scholar
     

  • Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).

    CAS 

    Google Scholar
     

  • Fulco, C. P. et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    CAS 

    Google Scholar
     

  • Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080.e20 (2021).

    CAS 

    Google Scholar
     

  • Belli, O., Karava, K., Farouni, R. & Platt, R. J. Multimodal scanning of genetic variants with base and prime editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02439-1 (2024).

  • Coelho, M. A. et al. Base editing screens define the genetic landscape of cancer drug resistance mechanisms. Nat. Genet. 56, 2479–2492 (2024).

    CAS 

    Google Scholar
     

  • Lue, N. Z. & Liau, B. B. Base editor screens for in situ mutational scanning at scale. Mol. Cell 83, 2167–2187 (2023).

    CAS 

    Google Scholar
     

  • Mikuni, T., Nishiyama, J., Sun, Y., Kamasawa, N. & Yasuda, R. High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing. Cell 165, 1803–1817 (2016).

    CAS 

    Google Scholar
     

  • Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human cellular organization. Science 375, eabi6983 (2022).

    CAS 

    Google Scholar
     

  • Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    CAS 

    Google Scholar
     

  • Sanchez, H. M., Lapidot, T. & Shalem, O. High-throughput optimized prime editing mediated endogenous protein tagging for pooled imaging of protein localization. Preprint at bioRxiv https://doi.org/10.1101/2024.09.16.613361 (2024).

  • Dede, M., McLaughlin, M., Kim, E. & Hart, T. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens. Genome Biol. 21, 262 (2020).

    CAS 

    Google Scholar
     

  • Gier, R. A. et al. High-performance CRISPR–Cas12a genome editing for combinatorial genetic screening. Nat. Commun. 11, 3455 (2020).

    CAS 

    Google Scholar
     

  • Esmaeili Anvar, N. et al. Efficient gene knockout and genetic interaction screening using the in4mer CRISPR/Cas12a multiplex knockout platform. Nat. Commun. 15, 3577 (2024).

    CAS 

    Google Scholar
     

  • Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D. & Platt, R. J. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods 16, 887–893 (2019).

    CAS 

    Google Scholar
     

  • Hsiung, C. C.-S. et al. Engineered CRISPR–Cas12a for higher-order combinatorial chromatin perturbations. Nat. Biotechnol. 43, 369–383 (2025).

    CAS 

    Google Scholar
     

  • Bryant, D. H. et al. Deep diversification of an AAV capsid protein by machine learning. Nat. Biotechnol. 39, 691–696 (2021).

    CAS 

    Google Scholar
     

  • Nonnenmacher, M. et al. Rapid evolution of blood–brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol. Ther. Methods Clin. Dev. 20, 366–378 (2021).

    CAS 

    Google Scholar
     

  • Tabebordbar, M. et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184, 4919–4938.e22 (2021).

    CAS 

    Google Scholar
     

  • Tsuchida, C. A., Wasko, K. M., Hamilton, J. R. & Doudna, J. A. Targeted nonviral delivery of genome editors in vivo. Proc. Natl Acad. Sci. USA 121, e2307796121 (2024).

    CAS 

    Google Scholar
     

  • Gleichman, A. J., Kawaguchi, R., Sofroniew, M. V. & Carmichael, S. T. A toolbox of astrocyte-specific, serotype-independent adeno-associated viral vectors using microRNA targeting sequences. Nat. Commun. 14, 7426 (2023).


    Google Scholar
     

  • Furlanis, E. et al. An enhancer-AAV toolbox to target and manipulate distinct interneuron subtypes. Neuron 113, 1525–1547.e15 (2025).

    CAS 

    Google Scholar
     

  • Hunker, A. C. et al. Enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. Neuron 113, 1507–1524.e17 (2025).

    CAS 

    Google Scholar
     

  • Gosai, S. J. et al. Machine-guided design of cell-type-targeting cis-regulatory elements. Nature 634, 1211–1220 (2024).

    CAS 

    Google Scholar
     

  • DaSilva, L. F. et al. DNA-diffusion: leveraging generative models for controlling chromatin accessibility and gene expression via synthetic regulatory elements. Preprint at bioRxiv https://doi.org/10.1101/2024.02.01.578352 (2024).

  • Lal, A., Garfield, D., Biancalani, T. & Eraslan, G. Designing realistic regulatory DNA with autoregressive language models. Genome Res. 34, 1411–1420 (2024).

    CAS 

    Google Scholar
     

  • Al-Shayeb, B. et al. Diverse virus-encoded CRISPR–Cas systems include streamlined genome editors. Cell 185, 4574–4586.e16 (2022).

    CAS 

    Google Scholar
     

  • Hino, T. et al. An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell 186, 4920–4935.e23 (2023).

    CAS 

    Google Scholar
     

  • Yan, R. E. et al. Pooled CRISPR screens with joint single-nucleus chromatin accessibility and transcriptome profiling. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02475-x (2024).

  • Tian, F. et al. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron 110, 2607–2624.e8 (2022).

    CAS 

    Google Scholar
     

  • LaFleur, M. W. & Sharpe, A. H. CRISPR screens to identify regulators of tumor immunity. Annu. Rev. Cancer Biol. 6, 103–122 (2022).


    Google Scholar
     

  • Shi, H., Doench, J. G. & Chi, H. CRISPR screens for functional interrogation of immunity. Nat. Rev. Immunol. 23, 363–380 (2023).

    CAS 

    Google Scholar
     

  • Csendes, G., Sanz, G., Szalay, K. Z. & Szalai, B. Benchmarking foundation cell models for post-perturbation RNA-seq prediction. BMC Genomics 26, 393 (2025).


    Google Scholar
     

  • Bunne, C. et al. How to build the virtual cell with artificial intelligence: priorities and opportunities. Cell 187, 7045–7063 (2024). This perspective brainstorms the use of perturbation datasets to build the artificial intelligence virtual cell.

    CAS 

    Google Scholar
     

  • Rood, J. E., Hupalowska, A. & Regev, A. Toward a foundation model of causal cell and tissue biology with a perturbation cell and tissue atlas. Cell 187, 4520–4545 (2024).

    CAS 

    Google Scholar
     

  • Ahlmann-Eltze, C., Huber, W. & Anders, S. Deep learning-based predictions of gene perturbation effects do not yet outperform simple linear methods. Preprint at bioRxiv https://doi.org/10.1101/2024.09.16.613342 (2024).

  • Lotfollahi, M. et al. Predicting cellular responses to complex perturbations in high‐throughput screens. Mol. Syst. Biol. 19, e11517 (2023).

    CAS 

    Google Scholar
     

  • Bendidi, I. et al. Benchmarking transcriptomics foundation models for perturbation analysis: one PCA still rules them all. Preprint at https://doi.org/10.48550/arXiv.2410.13956 (2024).

  • Roohani, Y. H. et al. Virtual cell challenge: toward a Turing test for the virtual cell. Cell 188, 3370–3374 (2025).

    CAS 

    Google Scholar
     

  • Zufferey, R., Donello, J. E., Trono, D. & Hope, T. J. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892 (1999).

    CAS 

    Google Scholar
     

  • Barrangou, R. & Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2, 17092 (2017).

    CAS 

    Google Scholar
     

  • Hille, F. et al. The biology of CRISPR–Cas: backward and forward. Cell 172, 1239–1259 (2018).

    CAS 

    Google Scholar
     

  • Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).

    CAS 

    Google Scholar
     

  • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS 

    Google Scholar
     

  • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS 

    Google Scholar
     

  • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    CAS 

    Google Scholar
     

  • Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016).

    CAS 

    Google Scholar
     

  • Zetsche, B. et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    CAS 

    Google Scholar
     

  • Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).


    Google Scholar
     

  • East-Seletsky, A. et al. Two distinct RNase activities of CRISPR–C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    CAS 

    Google Scholar
     

  • Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).

    CAS 

    Google Scholar
     

  • Klompe, S. E. et al. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons. Mol. Cell 82, 616–628.e5 (2022).

    CAS 

    Google Scholar
     

  • Özcan, A. et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597, 720–725 (2021).


    Google Scholar
     

  • Koonin, E. V., Gootenberg, J. S. & Abudayyeh, O. O. Discovery of diverse CRISPR–Cas systems and expansion of the genome engineering toolbox. Biochemistry 62, 3465–3487 (2023).

    CAS 

    Google Scholar
     

  • Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS 

    Google Scholar
     

  • Liu, Y. et al. Engineering cell signaling using tunable CRISPR–Cpf1-based transcription factors. Nat. Commun. 8, 2095 (2017).


    Google Scholar
     

  • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS 

    Google Scholar
     

  • Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    CAS 

    Google Scholar
     

  • Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS 

    Google Scholar
     

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS 

    Google Scholar
     

  • Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

    CAS 

    Google Scholar
     

  • Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017).

    CAS 

    Google Scholar
     

  • Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    CAS 

    Google Scholar
     

  • Charles, E. J. et al. Engineering improved Cas13 effectors for targeted post-transcriptional regulation of gene expression. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445687 (2021).

  • Otoupal, P. B., Cress, B. F., Doudna, J. A. & Schoeniger, J. S. CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Res. 50, 8986–8998 (2022).

    CAS 

    Google Scholar
     

  • Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    CAS 

    Google Scholar