• Foyer, C. H. et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2, 16112 (2016).

    PubMed 

    Google Scholar
     

  • Lavin, M., Herendeen, P. S. & Wojciechowski, M. F. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol. 54, 575–594 (2005).

    PubMed 

    Google Scholar
     

  • Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Abbo, S. et al. Reconsidering domestication of legumes versus cereals in the ancient near east. Q. Rev. Biol. 84, 29–50 (2009).

    PubMed 

    Google Scholar
     

  • Alam, O. & Purugganan, M. D. Domestication and the evolution of crops: variable syndromes, complex genetic architectures, and ecological entanglements. Plant Cell 36, 1227–1241 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46, 707–713 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. et al. Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement. Nat. Genet. 56, 992–1005 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement. Plant Commun. 3, 100352 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Njaci, I. et al. Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding. Nat. Commun. 14, 1915 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garg, V. et al. Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement. J. Adv. Res. 42, 315–329 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, T. et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat. Genet. 54, 1553–1563 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayakodi, M. et al. The giant diploid faba genome unlocks variation in a global protein crop. Nature 615, 652–659 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramsay, L. et al. Genomic rearrangements have consequences for introgression breeding as revealed by genome assemblies of wild and cultivated lentil species. Preprint at bioRxiv https://doi.org/10.1101/2021.07.23.453237 (2021).

  • Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31, 240–246 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. A telomere-to-telomere gap-free assembly of soybean genome. Mol. Plant 16, 1711–1714 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, M. et al. A reference-grade wild soybean genome. Nat. Commun. 10, 1216 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hufnagel, B. et al. High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nat. Commun. 11, 492 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Velzen, R., Doyle, J. J. & Geurts, R. A resurrected scenario: single gain and massive loss of nitrogen-fixing nodulation. Trends Plant Sci. 24, 49–57 (2019).

    PubMed 

    Google Scholar
     

  • Roy, S. et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32, 15–41 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Markmann, K., Giczey, G. & Parniske, M. Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol. 6, e68 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amor, B. B. et al. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J. 34, 495–506 (2003).

    PubMed 

    Google Scholar
     

  • Smit, P. et al. Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol. 145, 183–191 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catoira, R. et al. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell 12, 1647–1666 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horvath, B. et al. Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol. Plant Microbe Interact. 24, 1345–1358 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Carvunis, A. R. et al. Proto-genes and de novo gene birth. Nature 487, 370–374 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reid, D. E., Ferguson, B. J. & Gresshoff, P. M. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol. Plant Microbe Interact. 24, 606–618 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Schauser, L., Roussis, A., Stiller, J. & Stougaard, J. A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Griesmann, M. et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361, eaat1743 (2018).

    PubMed 

    Google Scholar
     

  • Ding, Y., Shi, Y. & Yang, S. Molecular regulation of plant responses to environmental temperatures. Mol. Plant 13, 544–564 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. M. & Zhang, Y. Plant immunity: danger perception and signaling. Cell 181, 978–989 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Patterns and processes of diploidization in land plants. Annu. Rev. Plant Biol. 72, 387–410 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. Plant Cell 33, 1430–1446 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 50, 1435–1441 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408–414 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Varshney, R. K. et al. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat. Genet. 49, 1082–1088 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Varshney, R. K. et al. A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599, 622–627 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. J., Yu, Y., Liu, X., Zhang, X. S. & Su, Y. H. The Arabidopsis MATERNAL EFFECT EMBRYO ARREST45 protein modulates maternal auxin biosynthesis and controls seed size by inducing AINTEGUMENTA. Plant Cell 33, 1907–1926 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. SoyOmics: a deeply integrated database on soybean multi-omics. Mol. Plant 16, 794–797 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, H. et al. Construction of chromosome segment substitution lines and inheritance of seed-pod characteristics in wild soybean. Front. Plant Sci. 13, 869455 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Kreplak, J. et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 51, 1411–1422 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–768 (2010).


    Google Scholar
     

  • Zhu, T. et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J. 107, 303–314 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Noshay, J. M. et al. Assessing the regulatory potential of transposable elements using chromatin accessibility profiles of maize transposons. Genetics 217, 1–13 (2021).

    PubMed 

    Google Scholar
     

  • Crisp, P. A. et al. Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes. Proc. Natl Acad. Sci. USA 117, 23991–24000 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. et al. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375, eabg7985 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • McGurk, M. P. & Barbash, D. A. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Res. 28, 714–725 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements. Genome Res. 31, 2276–2289 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32, 2103–2110 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonge, M. et al. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23, 258 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ou, S. & Jiang, N. LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons. Mob. DNA 10, 48 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, H., Bombarely, A. & Li, S. DeepTE: a computational method for de novo classification of transposons with convolutional neural network. Bioinformatics 36, 4269–4275 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S. O. & Grau, J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinformatics 19, 189 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang, Y. et al. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nat. Plants 8, 233–244 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Lonardi, S. et al. The genome of cowpea (Vigna unguiculata (L.) Walp.). Plant J. 98, 767–782 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, Y. J. et al. Genome sequence of mungbean and insights into evolution within Vigna species. Nat. Commun. 5, 5443 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Varshney, R. K. et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 30, 83–89 (2011).

    PubMed 

    Google Scholar
     

  • Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouyang, S. et al. The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res. 35, D883–7 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–10 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Pan-genome of wild and cultivated soybeans. Cell 182, 162–176 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, P. et al. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Mol. Plant 15, 1841–1851 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S. et al. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36, 5516–5518 (2021).

    PubMed 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niyikiza, D. et al. Interactions of gene expression, alternative splicing, and DNA methylation in determining nodule identity. Plant J. 103, 1744–1766 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Xue, Y. et al. Genome wide transcriptome analysis reveals complex regulatory mechanisms underlying phosphate homeostasis in soybean nodules. Int. J. Mol. Sci. 19, 2924 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y. et al. Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell 26, 996–1008 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhikari, S., Damodaran, S. & Subramanian, S. Lateral root and nodule transcriptomes of soybean. Data 4, 64 (2019).


    Google Scholar
     

  • Stein, J. C. et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat. Genet. 50, 285–296 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Mount, D. W. Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc. 2007, pdb top17 (2007).

    PubMed 

    Google Scholar
     

  • Ngou, B. P. M., Heal, R., Wyler, M., Schmid, M. W. & Jones, J. D. G. Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. Nat. Plants 8, 1146–1152 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van de Weyer, A. L. et al. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260–1272 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-seq applications. Bioinformatics 27, 1571–1572 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed 
    PubMed Central 

    Google Scholar