• Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fournier, R., Tsangalidou, Z., Reich, D. & Palamara, P. F. Haplotype-based inference of recent effective population size in modern and ancient DNA samples. Nat. Commun. 14, 7945 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palamara, P. F. & Pe’er, I. Inference of historical migration rates via haplotype sharing. Bioinformatics 29, i180–i188 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Asadi, H., Petkova, D., Stephens, M. & Novembre, J. Estimating recent migration and population-size surfaces. PLoS Genet. 15, e1007908 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, X., Cai, R. & Browning, S. R. Estimating the genome-wide mutation rate from thousands of unrelated individuals. Am. J. Hum. Genet. 109, 2178–2184 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porubsky, D. et al. Human de novo mutation rates from a four-generation pedigree reference. Nature 643, 427–436 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lassen, F. H. et al. Exome-wide evidence of compound heterozygous effects across common phenotypes in the UK Biobank. Cell Genom. 4, 100602 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, S. R., Waples, R. K. & Browning, B. L. Fast, accurate local ancestry inference with FLARE. Am. J. Hum. Genet. 110, 326–335 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. Improving polygenic risk prediction in admixed populations by explicitly modeling ancestral-differential effects via GAUDI. Nat. Commun. 15, 1016 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horimoto, A. R. V. R. et al. Admixture mapping of chronic kidney disease and risk factors in Hispanic/Latino individuals from Central America country of origin. Circ. Genom. Precis. Med. 17, e004314 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. Opportunities and challenges of local ancestry in genetic association analyses. Am. J. Hum. Genet. 112, 727–740 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation. Bioinformatics 31, 782–784 (2015). This paper introduces the minimac2 imputation method (minimac3 and minimac4 are not associated with any publications).

    Article 
    PubMed 

    Google Scholar
     

  • Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018). This paper introduces the Beagle5 imputation method.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubinacci, S., Delaneau, O. & Marchini, J. Genotype imputation using the positional burrows wheeler transform. PLoS Genet. 16, e1009049 (2020). This paper introduces the IMPUTE5 imputation method.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. Analyses of biomarker traits in diverse UK Biobank participants identify associations missed by European-centric analysis strategies. J. Hum. Genet. 67, 87–93 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Huerta-Chagoya, A. et al. The power of TOPMed imputation for the discovery of Latino-enriched rare variants associated with type 2 diabetes. Diabetologia 66, 1273–1288 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, Z. S., Niu, T. & Liu, J. S. Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms. Am. J. Hum. Genet. 71, 1242–1247 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephens, M. & Scheet, P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76, 449–462 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheet, P. & Stephens, M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629–644 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlson, C. S. et al. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet. 74, 106–120 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Long, J. C., Williams, R. C. & Urbanek, M. An E-M algorithm and testing strategy for multiple-locus haplotypes. Am. J. Hum. Genet. 56, 799–810 (1995).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halperin, E. & Karp, R. M. Perfect phylogeny and haplotype assignment. In Proc. 8th Annual International Conference on Computational Molecular Biology 10–19 (ACM, 2004).

  • Halperin, E. & Eskin, E. Haplotype reconstruction from genotype data using imperfect phylogeny. Bioinformatics 20, 1842–1849 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165, 2213–2233 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fearnhead, P. & Donnelly, P. Estimating recombination rates from population genetic data. Genetics 159, 1299–1318 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loh, P.-R. et al. Reference-based phasing using the haplotype reference consortium panel. Nat. Genet. 48, 1443–1448 (2016). This paper introduces the Eagle2 phasing method, where PBWT is applied to improve computational efficiency.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmeister, R. J., Ribeiro, D. M., Rubinacci, S. & Delaneau, O. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. Nat. Genet. 55, 1243–1249 (2023). This paper introduces the SHAPEIT5 phasing method, where singletons are explicitly considered.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108, 1880–1890 (2021). This paper introduces the Beagle5 phasing method (which is different from the Beagle5 imputation publication), where a two-stage phasing strategy is proposed separately for common and rare variants.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021). This paper introduces the TOPMed reference panel containing haplotypes from diverse populations, which is more suitable for imputation of global populations compared with previous reference panels, including 1000 Genomes and HRC.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Y.-C. A. et al. Taiwan Biobank: a rich biomedical research database of the Taiwanese population. Cell Genom. 2, 100197 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016). This paper introduces the Michigan imputation server, exemplary in promoting broader usage of reference panels and public servers without accessing individual genotypes contributing to the panels.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al Bkhetan, Z., Zobel, J., Kowalczyk, A., Verspoor, K. & Goudey, B. Exploring effective approaches for haplotype block phasing. BMC Bioinform. 20, 540 (2019).

    Article 

    Google Scholar
     

  • Al Bkhetan, Z., Chana, G., Ramamohanarao, K., Verspoor, K. & Goudey, B. Evaluation of consensus strategies for haplotype phasing. Brief. Bioinform. 22, bbaa280 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wertenbroek, R., Hofmeister, R. J., Xenarios, I., Thoma, Y. & Delaneau, O. Improving population scale statistical phasing with whole-genome sequencing data. PLoS Genet. 20, e1011092 (2024). This paper introduces a method to correct phasing errors leveraging raw sequencing.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. MagicalRsq: machine-learning-based genotype imputation quality calibration. Am. J. Hum. Genet. 109, 1986–1997 (2022). This paper introduces a framework to recalculate imputation quality metric for post-imputation quality control, especially for low-frequency and rare variants where the state-of-the-art imputation quality metric (for example, Rsq) performs less well.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. MagicalRsq-X: a cross-cohort transferable genotype imputation quality metric. Am. J. Hum. Genet. 111, 990–995 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aleknonytė-Resch, M., Szymczak, S., Freitag-Wolf, S., Dempfle, A. & Krawczak, M. Genotype imputation in case-only studies of gene-environment interaction: validity and power. Hum. Genet. 140, 1217–1228 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. Leveraging TOPMed imputation server and constructing a cohort-specific imputation reference panel to enhance genotype imputation among cystic fibrosis patients. HGG Adv. 3, 100090 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, W. et al. The hazards of genotype imputation when mapping disease susceptibility variants. Genome Biol. 25, 7 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, E. Y. et al. Genotype imputation of metabochip SNPs using a study-specific reference panel of ~4,000 haplotypes in African Americans from the women’s health initiative. Genet. Epidemiol. 36, 107–117 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z. M. et al. Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations. PLoS Comput. Biol. 18, e1009628 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sengupta, D. et al. Performance and accuracy evaluation of reference panels for genotype imputation in sub-Saharan African populations. Cell Genom. 3, 100332 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cahoon, J. L. et al. Imputation accuracy across global human populations. Am. J. Hum. Genet. 111, 979–989 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Handsaker, R. E. et al. Large multiallelic copy number variations in humans. Nat. Genet. 47, 296–303 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saini, S., Mitra, I., Mousavi, N., Fotsing, S. F. & Gymrek, M. A reference haplotype panel for genome-wide imputation of short tandem repeats. Nat. Commun. 9, 4397 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziaei Jam, H. et al. A deep population reference panel of tandem repeat variation. Nat. Commun. 14, 6711 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noyvert, B. et al. Imputation of structural variants using a multi-ancestry long-read sequencing panel enables identification of disease associations. eLife 14, RP106115 (2025). This work performs imputation of SVs using a reference panel based on long-read sequencing data, demonstrating the practical utility of long-read sequencing in the context of imputation, particularly for SVs.


    Google Scholar
     

  • Browning, S. R. & Browning, B. L. Haplotype phasing: existing methods and new developments. Nat. Rev. Genet. 12, 703–714 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakaue, S. et al. Tutorial: a statistical genetics guide to identifying HLA alleles driving complex disease. Nat. Protoc. 18, 2625–2641 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tregouet, D. A., Escolano, S., Tiret, L., Mallet, A. & Golmard, J. L. A new algorithm for haplotype-based association analysis: the Stochastic-EM algorithm. Ann. Hum. Genet. 68, 165–177 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Browning, B. L. & Browning, S. R. Statistical phasing of 150,119 sequenced genomes in the UK Biobank. Am. J. Hum. Genet. 110, 161–165 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sohail, M. et al. Mexican Biobank advances population and medical genomics of diverse ancestries. Nature 622, 775–783 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durbin, R. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). Bioinformatics 30, 1266–1272 (2014). This paper proposes a series of algorithms for haplotype data compression and efficient haplotype matching, reducing the computational complexity from quadratic to linear in terms of the number of reference haplotypes. It represents a milestone of recent computational development of phasing and imputation methods.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate, scalable and integrative haplotype estimation. Nat. Commun. 10, 5436 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaneau, O., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • O’Connell, J. et al. Haplotype estimation for biobank-scale data sets. Nat. Genet. 48, 817–820 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palin, K., Campbell, H., Wright, A. F., Wilson, J. F. & Durbin, R. Identity-by-descent-based phasing and imputation in founder populations using graphical models. Genet. Epidemiol. 35, 853–860 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickey, J. M. et al. A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes. Genet. Sel. Evol. 43, 12 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herzig, A. F. et al. Strategies for phasing and imputation in a population isolate. Genet. Epidemiol. 42, 201–213 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, A. L., Patterson, N., Glessner, J., Hakonarson, H. & Reich, D. Phasing of many thousands of genotyped samples. Am. J. Hum. Genet. 91, 238–251 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connell, J. et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 10, e1004234 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oget-Ebrad, C. et al. Benchmarking phasing software with a whole-genome sequenced cattle pedigree. BMC Genom. 23, 130 (2022).

    Article 

    Google Scholar
     

  • Choi, Y., Chan, A. P., Kirkness, E., Telenti, A. & Schork, N. J. Comparison of phasing strategies for whole human genomes. PLoS Genet. 14, e1007308 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lajugie, J. et al. Complete genome phasing of family quartet by combination of genetic, physical and population-based phasing analysis. PLoS ONE 8, e64571 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, G. K., Wang, K., Stram, A. H., Sobel, E. M. & Lange, K. Mendel-GPU: haplotyping and genotype imputation on graphics processing units. Bioinformatics 28, 2979–2980 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Na, J. C., Lee, I., Rhee, J.-K. & Shin, S.-Y. Fast single individual haplotyping method using GPGPU. Comput. Biol. Med. 113, 103421 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Luo, Y. et al. A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nat. Genet. 53, 1504–1516 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 1000 Genomes Project Consortium et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article 

    Google Scholar
     

  • Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu. Rev. Genom. Hum. Genet. 10, 387–406 (2009).

    Article 

    Google Scholar
     

  • Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Das, S., Abecasis, G. R. & Browning, B. L. Genotype imputation from large reference panels. Annu. Rev. Genom. Hum. Genet. 19, 73–96 (2018).

    Article 

    Google Scholar
     

  • Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, K., Tadaka, S., Okamura, Y. & Kinoshita, K. Two-stage strategy using denoising autoencoders for robust reference-free genotype imputation with missing input genotypes. J. Hum. Genet. 69, 511–518 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasaniuc, B. et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet. 44, 631–635 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hui, R., D’Atanasio, E., Cassidy, L. M., Scheib, C. L. & Kivisild, T. Evaluating genotype imputation pipeline for ultra-low coverage ancient genomes. Sci. Rep. 10, 18542 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sousa da Mota, B. et al. Imputation of ancient human genomes. Nat. Commun. 14, 3660 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Spiliopoulou, A., Colombo, M., Orchard, P., Agakov, F. & McKeigue, P. GeneImp: fast imputation to large reference panels using genotype likelihoods from ultralow coverage sequencing. Genetics 206, 91–104 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, R. W. et al. Rapid genotype imputation from sequence with reference panels. Nat. Genet. 53, 1104–1111 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jagirdar, K. et al. Molecular analysis of common polymorphisms within the human tyrosinase locus and genetic association with pigmentation traits. Pigment. Cell Melanoma Res. 27, 552–564 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • VanRaden, P. M., Sun, C. & O’Connell, J. R. Fast imputation using medium or low-coverage sequence data. BMC Genet. 16, 82 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, R. W., Flint, J., Myers, S. & Mott, R. Rapid genotype imputation from sequence without reference panels. Nat. Genet. 48, 965–969 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, C., Boer, M. P. & van Eeuwijk, F. A. Accurate genotype imputation in multiparental populations from low-coverage sequence. Genetics 210, 71–82 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geman, S. & Geman, D. Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984).

    Article 
    PubMed 

    Google Scholar
     

  • Rubinacci, S., Hofmeister, R. J., Sousa da Mota, B. & Delaneau, O. Imputation of low-coverage sequencing data from 150,119 UK Biobank genomes. Nat. Genet. 55, 1088–1090 (2023). This paper introduces GLIMPSE2, an imputation method specifically designed for ulcWGS data.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martiniano, R. et al. The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Royo, J. L. Hardy Weinberg equilibrium disturbances in case–control studies lead to non-conclusive results. Cell J. 22, 572–574 (2021).

    PubMed 

    Google Scholar
     

  • Wigginton, J. E., Cutler, D. J. & Abecasis, G. R. A note on exact tests of Hardy–Weinberg equilibrium. Am. J. Hum. Genet. 76, 887–893 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, K.-D., Di, G.-H., Fan, L. & Shao, Z.-M. Test of Hardy–Weinberg equilibrium in breast cancer case-control studies: an issue may influence the conclusions. Breast Cancer Res. Treat. 117, 675–677 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hachiya, T. et al. The NBDC-DDBJ imputation server facilitates the use of controlled access reference panel datasets in Japan. Hum. Gen. Var. 9, 48 (2022).

    Article 

    Google Scholar
     

  • Gürsoy, G., Chielle, E., Brannon, C. M., Maniatakos, M. & Gerstein, M. Privacy-preserving genotype imputation with fully homomorphic encryption. Cell Syst. 13, 173–182.e3 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mosca, M. J. & Cho, H. Reconstruction of private genomes through reference-based genotype imputation. Genome Biol. 24, 271 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavinato, T., Rubinacci, S., Malaspinas, A.-S. & Delaneau, O. A resampling-based approach to share reference panels. Nat. Comput. Sci. 4, 360–366 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rayner, N. W., Park, Y.-C., Fuchsberger, C., Barysenka, A. & Zeggini, E. Toward GDPR compliance with the Helmholtz Munich genotype imputation server. Nat. Genet. 56, 2580–2581 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, W. et al. IMMerge: merging imputation data at scale. Bioinformatics 39, btac750 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jostins, L., Morley, K. I. & Barrett, J. C. Imputation of low-frequency variants using the HapMap3 benefits from large, diverse reference sets. Eur. J. Hum. Genet. 19, 662–666 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, W.-Y. et al. Genotype imputation and reference panel: a systematic evaluation on haplotype size and diversity. Brief. Bioinform. 21, 1806–1817 (2019).


    Google Scholar
     

  • Kowalski, M. H. et al. Use of > 100,000 NHLBI trans-omics for precision medicine (TOPMed) consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet. 15, e1008500 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, S.-K. et al. NARD: whole-genome reference panel of 1779 Northeast Asians improves imputation accuracy of rare and low-frequency variants. Genome Med. 11, 64 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, C. et al. A high-resolution haplotype-resolved reference panel constructed from the China Kadoorie Biobank study. Nucleic Acids Res. 51, 11770–11782 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cengnata, A. et al. A genotype imputation reference panel specific for native Southeast Asian populations. NPJ Genom. Med. 9, 47 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connell, J. et al. A population-specific reference panel for improved genotype imputation in African Americans. Commun. Biol. 4, 1269 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panjwani, N. et al. Improving imputation in disease-relevant regions: lessons from cystic fibrosis. NPJ Genom. Med. 3, 8 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, K. et al. Meta-imputation: an efficient method to combine genotype data after imputation with multiple reference panels. Am. J. Hum. Genet. 109, 1007–1015 (2022). This paper introduces meta-imputation to combine imputed results from multiple reference panels. It is helpful in scenarios where multiple references are suitable, for example, where a small population-specific (or disease cohort) reference panel is available in addition to a large reference panel from general or mismatched populations.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, M. Y., Choi, N.-H., Won, H. H., Kim, B.-J. & Kim, Y. J. Analyzing the Korean reference genome with meta-imputation increased the imputation accuracy and spectrum of rare variants in the Korean population. Front. Genet. 13, 1008646 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. et al. Evaluation of imputation performance of multiple reference panels in a Pakistani population. HGG Adv. 6, 100395 (2025).

    PubMed 

    Google Scholar
     

  • Quick, C. et al. Sequencing and imputation in GWAS: cost-effective strategies to increase power and genomic coverage across diverse populations. Genet. Epidemiol. 44, 537–549 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, G. H. L., Santorico, S. A. & Spritz, R. A. Deep genotype imputation captures virtually all heritability of autoimmune vitiligo. Hum. Mol. Genet. 29, 859–863 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, W.-Y. et al. Efficient identification of trait-associated loss-of-function variants in the UK Biobank cohort by exome-sequencing based genotype imputation. Genet. Epidemiol. 47, 121–134 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Si, Y., Vanderwerff, B. & Zöllner, S. Why are rare variants hard to impute? Coalescent models reveal theoretical limits in existing algorithms. Genetics 217, iyab011 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S.-F. et al. Genotype imputation and variability in polygenic risk score estimation. Genome Med. 12, 100 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z., Xiao, X., Zhou, W., Zhu, D. & Amos, C. I. False positive findings during genome-wide association studies with imputation: influence of allele frequency and imputation accuracy. Hum. Mol. Genet. 31, 146–155 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Appadurai, V. et al. Accuracy of haplotype estimation and whole genome imputation affects complex trait analyses in complex biobanks. Commun. Biol. 6, 101 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scarano, C. et al. The third-generation sequencing challenge: novel insights for the omic sciences. Biomolecules 14, 568 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y., Luo, H., Wang, Z., Lam, H.-M. & Huang, C. Oxford Nanopore Technology: revolutionizing genomics research in plants. Trends Plant. Sci. 27, 510–511 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Snyder, M. W., Adey, A., Kitzman, J. O. & Shendure, J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat. Rev. Genet. 16, 344–358 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Garg, S. Computational methods for chromosome-scale haplotype reconstruction. Genome Biol. 22, 101 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. et al. Complex genome assembly based on long-read sequencing. Brief. Bioinform. 23, bbac305 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Maestri, S. et al. A long-read sequencing approach for direct haplotype phasing in clinical settings. Int. J. Mol. Sci. 21, 9177 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kronenberg, Z. N. et al. Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C. Nat. Commun. 12, 1935 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakamoto, Y. et al. Phasing analysis of lung cancer genomes using a long read sequencer. Nat. Commun. 13, 3464 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bansal, V. & Bafna, V. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24, i153–i159 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Bansal, V. Hapcut2: a method for phasing genomes using experimental sequence data. Methods Mol. Biol. 2590, 139–147 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Patterson, M. et al. WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J. Comput. Biol. 22, 498–509 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bracciali, A. et al. PWHATSHAP: efficient haplotyping for future generation sequencing. BMC Bioinform. 17, 342 (2016).

    Article 

    Google Scholar
     

  • Garg, S. et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat. Biotechnol. 39, 309–312 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Feng, Z., Clemente, J. C., Wong, B. & Schadt, E. E. Detecting and phasing minor single-nucleotide variants from long-read sequencing data. Nat. Commun. 12, 3032 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y., Chen, L., Miao, X. & Li, S. C. SpecHap: a diploid phasing algorithm based on spectral graph theory. Nucleic Acids Res. 49, e114 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fruzangohar, M., Timmins, W. A., Kravchuk, O. & Taylor, J. HaploMaker: an improved algorithm for rapid haplotype assembly of genomic sequences. Gigascience 11, giac038 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J.-H., Chen, L.-C., Yu, S.-C. & Huang, Y.-T. LongPhase: an ultra-fast chromosome-scale phasing algorithm for small and large variants. Bioinformatics 38, 1816–1822 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Holt, J. M. et al. HiPhase: jointly phasing small, structural, and tandem repeat variants from HiFi sequencing. Bioinformatics 40, btae042 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edsgärd, D., Reinius, B. & Sandberg, R. scphaser: haplotype inference using single-cell RNA-seq data. Bioinformatics 32, 3038–3040 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castel, S. E., Mohammadi, P., Chung, W. K., Shen, Y. & Lappalainen, T. Rare variant phasing and haplotypic expression from RNA sequencing with phASER. Nat. Commun. 7, 12817 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akbari, V. & Jones, S. J. M. Phasing DNA methylation. Methods Mol. Biol. 2590, 219–235 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Fu, Y. et al. MethPhaser: methylation-based long-read haplotype phasing of human genomes. Nat. Commun. 15, 5327 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouchi, S., Kajitani, R. & Itoh, T. GreenHill: a de novo chromosome-level scaffolding and phasing tool using Hi-C. Genome Biol. 24, 162 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henglin, M. et al. Graphasing: phasing diploid genome assembly graphs with single-cell strand sequencing. Genome Biol. 25, 265 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W.-Y. et al. Leveraging reads that span multiple single nucleotide polymorphisms for haplotype inference from sequencing data. Bioinformatics 29, 2245–2252 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bansal, V. Integrating read-based and population-based phasing for dense and accurate haplotyping of individual genomes. Bioinformatics 35, i242–i248 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schloissnig, S. et al. Structural variation in 1,019 diverse humans based on long-read sequencing. Nature 644, 442–452 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Dalla-Torre, H. et al. Nucleotide transformer: building and evaluating robust foundation models for human genomics. Nat. Methods 22, 287–297 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Consens, M. E. et al. Transformers and genome language models. Nat. Mach. Intell. 7, 346–362 (2025).

    Article 

    Google Scholar
     

  • Durante, Z. et al. Agent AI: surveying the horizons of multimodal interaction. Preprint at https://doi.org/10.48550/arXiv.2401.03568 (2024).

  • Kapoor, S., Stroebl, B., Siegel, Z. S., Nadgir, N. & Narayanan, A. AI agents that matter. Preprint at https://doi.org/10.48550/arXiv.2407.01502 (2024).

  • Choudhury, O., Chakrabarty, A. & Emrich, S. J. Highly accurate and efficient data-driven methods for genotype imputation. IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 1107–1116 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, J. & Shi, X. Sparse convolutional denoising autoencoders for genotype imputation. Genes 10, 652 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, K. et al. A genotype imputation method for de-identified haplotype reference information by using recurrent neural network. PLoS Comput. Biol. 16, e1008207 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi Duong, V. et al. A rapid and reference-free imputation method for low-cost genotyping platforms. Sci. Rep. 13, 23083 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mowlaei, M. E. et al. STICI: split-transformer with integrated convolutions for genotype imputation. Nat. Commun. 16, 1218 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. Polygenic scores of cardiometabolic risk factors in american indian adults. JAMA Netw. Open 8, e250535 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Sidore, C., Kang, H. M., Boehnke, M. & Abecasis, G. R. Low-coverage sequencing: implications for design of complex trait association studies. Genome Res. 21, 940–951 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zöllner, S. Sampling strategies for rare variant tests in case-control studies. Eur. J. Hum. Genet. 20, 1085–1091 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, J. et al. AbCD: arbitrary coverage design for sequencing-based genetic studies. Bioinformatics 29, 799–801 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan, Q., Liu, E. Y., Croteau-Chonka, D. C., Mohlke, K. L. & Li, Y. A comprehensive SNP and indel imputability database. Bioinformatics 29, 528–531 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, B. L. & Browning, S. R. Efficient multilocus association testing for whole genome association studies using localized haplotype clustering. Genet. Epidemiol. 31, 365–375 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Loh, P.-R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing in a UK Biobank cohort. Nat. Genet. 48, 811–816 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Platt, A., Pivirotto, A., Knoblauch, J. & Hey, J. An estimator of first coalescent time reveals selection on young variants and large heterogeneity in rare allele ages among human populations. PLoS Genet. 15, e1008340 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banday, A. R. et al. Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nat. Genet. 54, 1103–1116 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michalek, D. A. et al. A multi-ancestry genome-wide association study in type 1 diabetes. Hum. Mol. Genet. 33, 958–968 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucas, E. R. et al. Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae and Anopheles coluzzii. Nat. Commun. 14, 4946 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bråten, L. S., Ingelman-Sundberg, M., Jukic, M. M., Molden, E. & Kringen, M. K. Impact of the novel CYP2C:TG haplotype and CYP2B6 variants on sertraline exposure in a large patient population. Clin. Transl. Sci. 15, 2135–2145 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aksit, M. A. et al. Pleiotropic modifiers of age-related diabetes and neonatal intestinal obstruction in cystic fibrosis. Am. J. Hum. Genet. 109, 1894–1908 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loftus, S. K. et al. Haplotype-based analysis resolves missing heritability in oculocutaneous albinism type 1B. Am. J. Hum. Genet. 110, 1123–1137 (2023). This paper sets up an example of how phasing or haplotype-level analyses can help better understand disease-causing alleles, elucidate genetic mechanisms underlying diseases and aid genetic diagnosis.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khankhanian, P., Gourraud, P.-A., Lizee, A. & Goodin, D. S. Haplotype-based approach to known MS-associated regions increases the amount of explained risk. J. Med. Genet. 52, 587–594 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Albiñana, C. et al. Genetic correlates of vitamin D-binding protein and 25-hydroxyvitamin D in neonatal dried blood spots. Nat. Commun. 14, 852 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, S. et al. Evidence that the Ser192Tyr/Arg402Gln in cis tyrosinase gene haplotype is a disease-causing allele in oculocutaneous albinism type 1B (OCA1B). NPJ Genom. Med. 7, 2 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shriner, D. Overview of admixture mapping. Curr. Protoc. 3, e677 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Duan, Q. et al. A robust and powerful two-step testing procedure for local ancestry adjusted allelic association analysis in admixed populations. Genet. Epidemiol. 42, 288–302 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, K. et al. Admix-kit: an integrated toolkit and pipeline for genetic analyses of admixed populations. Bioinformatics 40, btae148 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, K. et al. Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals. Nat. Genet. 55, 549–558 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meisner, J., Benros, M. E. & Rasmussen, S. Leveraging haplotype information in heritability estimation and polygenic prediction. Nat. Commun. 16, 126 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar