• Kaschta, D. et al. Evaluating genome sequencing strategies: trio, singleton, and standard testing in rare disease diagnosis. Preprint at medRxiv https://doi.org/10.1101/2024.12.20.24319228 (2024).

  • Wojcik, M. H. et al. Genome sequencing for diagnosing rare diseases. N. Engl. J. Med. 390, 1985–1997 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodder, A. et al. Benefits for children with suspected cancer from routine whole-genome sequencing. Nat. Med. 30, 1905–1912 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kerle, I. A. et al. Translational and clinical comparison of whole genome and transcriptome to panel sequencing in precision oncology. npj Precis. Oncol. 9, 9 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellingford, J. M. et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med. 14, 73 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100,000 Genomes Project Pilot Investigatorset al. 100,000 genomes pilot on rare-disease diagnosis in health care — preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).


    Google Scholar
     

  • Nieboer, M. M., Nguyen, L. & de Ridder, J. Predicting pathogenic non-coding SVs disrupting the 3D genome in 1646 whole cancer genomes using multiple instance learning. Sci. Rep. 11, 14411 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagnamenta, A. T. et al. Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases. Genome Med. 15, 94 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huddleston, J. et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 27, 677–685 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Audano, P. A. et al. Characterizing the major structural variant alleles of the human genome. Cell 176, 663–675.e19 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372, eabf7117 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fantes, J. et al. Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum. Mol. Genet. 4, 415–422 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Lettice, L. A. et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc. Natl Acad. Sci. USA 99, 7548–7553 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinjan, D. J. & van Heyningen, V. Position effect in human genetic disease. Hum. Mol. Genet. 7, 1611–1618 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Socha, M. et al. Position effects at the FGF8 locus are associated with femoral hypoplasia. Am. J. Hum. Genet. 108, 1725–1734 (2021). This study demonstrated the differences between gene dosage effects and position effects in individuals with limb malformation and mouse models.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Kleinjan, D. A. et al. Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6. Hum. Mol. Genet. 10, 2049–2059 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Velagaleti, G. V. et al. Position effects due to chromosome breakpoints that map ~900 Kb upstream and ~1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am. J. Hum. Genet. 76, 652–662 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34, 157–165 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Lupski, J. R. & Stankiewicz, P. T. Genomic Disorders: The Genomic Basis of Disease (Springer Science & Business Media, 2007).

  • Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell 161, 1012–1025 (2015). This study introduced the concept of TADs as a useful unit to interpret position effects of SVs caused by altered 3D genome architecture in the context of rare diseases.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. Science 380, 1070–1076 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, H.-J. et al. Topological isolation of developmental regulators in mammalian genomes. Nat. Commun. 12, 4897 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, L. et al. Lifelong restructuring of 3D genome architecture in cerebellar granule cells. Science 381, 1112–1119 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dehingia, B., Milewska, M., Janowski, M. & Pękowska, A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep. 23, e55146 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchasovnikarova, I. A. et al. Gene silencing. Epigenetic silencing by the HUSH complex mediates position–effect variegation in human cells. Science 348, 1481–1485 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davidson, I. F. & Peters, J.-M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, D., Lam, J. & Blobel, G. A. Engineering three-dimensional genome folding. Nat. Genet. 53, 602–611 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Dekker, C., Haering, C. H., Peters, J.-M. & Rowland, B. D. How do molecular motors fold the genome? Science 382, 646–648 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Computational methods for analysing multiscale 3D genome organization. Nat. Rev. Genet. 25, 123–141 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Jerkovic, I. & Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22, 511–528 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Raca, G. et al. Points to consider in the detection of germline structural variants using next-generation sequencing: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100316 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Dubois, F., Sidiropoulos, N., Weischenfeldt, J. & Beroukhim, R. Structural variations in cancer and the 3D genome. Nat. Rev. Cancer 22, 533–546 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchal, C., Sima, J. & Gilbert, D. M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721–737 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnould, C. & Legube, G. The secret life of chromosome loops upon DNA double-strand break. J. Mol. Biol. 432, 724–736 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, L. et al. Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion. Nature 584, 142–147 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajderkar, S. et al. Topologically associating domain boundaries are required for normal genome function. Commun. Biol. 6, 435 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oji, A. et al. Structure and dynamics of nuclear A/B compartments and subcompartments. Curr. Opin. Cell Biol. 90, 102406 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Jabbari, K., Chakraborty, M. & Wiehe, T. DNA sequence-dependent chromatin architecture and nuclear hubs formation. Sci. Rep. 9, 1–11 (2019).

    CAS 

    Google Scholar
     

  • Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012). This paper first reported the identification and description of topologically associating domains from Hi-C maps.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuin, J. et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature 604, 571–577 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015). This study convincingly established a link between the loop extrusion model and TADs based on engineered genomes and polymer-based computational modelling.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oldenkamp, R. & Rowland, B. D. A walk through the SMC cycle: from catching DNAs to shaping the genome. Mol. Cell 82, 1616–1630 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Valton, A.-L. et al. A cohesin traffic pattern genetically linked to gene regulation. Nat. Struct. Mol. Biol. 29, 1239–1251 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnould, C. et al. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590, 660–665 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dequeker, B. J. H. et al. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Nature 606, 197–203 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nanni, L., Ceri, S. & Logie, C. Spatial patterns of CTCF sites define the anatomy of TADs and their boundaries. Genome Biol. 21, 1–25 (2020).


    Google Scholar
     

  • Pradhan, B. et al. SMC complexes can traverse physical roadblocks bigger than their ring size. Cell Rep. 41, 111491 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, T.-H. S. et al. Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1. Nat. Genet. 54, 1919–1932 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rinzema, N. J. et al. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Nat. Struct. Mol. Biol. 29, 563–574 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calderon, L. et al. Cohesin-dependence of neuronal gene expression relates to chromatin loop length. eLife 11, e76539 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kane, L. et al. Cohesin is required for long-range enhancer action at the Shh locus. Nat. Struct. Mol. Biol. 29, 891–897 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, P. et al. Cohesin prevents cross-domain gene coactivation. Nat. Genet. 56, 1654–1664 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akdemir, K. C. et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat. Genet. 52, 294–305 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katainen, R. et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 47, 818–821 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, T. et al. Enhancer coamplification and hijacking promote oncogene expression in liposarcoma. Cancer Res. 83, 1517–1530 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, S. G. et al. Integrated analyses highlight interactions between the three-dimensional genome and DNA, RNA and epigenomic alterations in metastatic prostate cancer. Nat. Genet. 56, 1689–1700 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soto, D. C. et al. Genomic structural variation: a complex but important driver of human evolution. Am. J. Biol. Anthropol. 181, 118–144 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, D. et al. Complete sequencing of ape genomes. Nature 641, 401–418 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grimes, K. et al. Cell-type-specific consequences of mosaic structural variants in hematopoietic stem and progenitor cells. Nat. Genet. 56, 1134–1146 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stankiewicz, P. & Lupski, J. R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Sano, Y. et al. Likely pathogenic structural variants in genetically unsolved patients with retinitis pigmentosa revealed by long-read sequencing. J. Med. Genet. 59, 1133–1138 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Pagnamenta, A. T. et al. The impact of inversions across 33,924 families with rare disease from a national genome sequencing project. Am. J. Hum. Genet. 111, 1140–1164 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bardoni, B. et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat. Genet. 7, 497–501 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Dong, Y. et al. Targeted next-generation sequencing identification of mutations in patients with disorders of sex development. BMC Med. Genet. 17, 23 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holder-Espinasse, M. et al. Duplication of 10q24 locus: broadening the clinical and radiological spectrum. Eur. J. Hum. Genet. 27, 525–534 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Si, N. et al. Duplications involving the long range HMX1 enhancer are associated with human isolated bilateral concha-type microtia. J. Transl. Med. 18, 244 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Germline intergenic duplications at Xq26.1 underlie Bazex–Dupré–Christol basal cell carcinoma susceptibility syndrome. Br. J. Dermatol. 187, 948–961 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Yumiceba, V. & Spielmann, M. When too much is too much: noncoding duplications in skin disorders. Br. J. Dermatol. 188, e2–e3 (2023).

    PubMed 

    Google Scholar
     

  • Pagnamenta, A. T. et al. Conclusion of diagnostic odysseys due to inversions disrupting GLI3 and FBN1. J. Med. Genet. 60, 505–510 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, B., Jiang, R., Xie, B., Wu, W. & Zhao, Y. Fusion genes in gynecologic tumors: the occurrence, molecular mechanism and prospect for therapy. Cell Death Dis. 12, 783 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gryder, B. E. et al. Miswired enhancer logic drives a cancer of the muscle lineage. iScience 23, 101103 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baxter, J. S. et al. Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. Am. J. Hum. Genet. 108, 1190–1203 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibn-Salem, J. et al. Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biol. 15, 423 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lettice, L. A. et al. Enhancer-adoption as a mechanism of human developmental disease. Hum. Mutat. 32, 1492–1499 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Gröschel, S. et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157, 369–381 (2014).

    PubMed 

    Google Scholar
     

  • Redin, C. et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat. Genet. 49, 36–45 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Dimartino, P. et al. Structural variants at the LMNB1 locus: deciphering pathomechanisms in autosomal dominant adult-onset demyelinating leukodystrophy. Ann. Neurol. 96, 855–870 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baudic, M. et al. TAD boundary deletion causes PITX2-related cardiac electrical and structural defects. Nat. Commun. 15, 3380 (2024). These authors showed that deletion of a TAD boundary — identified to be the minimal critical region across seven families with congenital heart defects — leads to enhancer hijacking and altered differentiation during heart development.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salnikov, P. et al. Structural variants in the Epb41l4a locus: TAD disruption and Nrep gene misregulation as hypothetical drivers of neurodevelopmental outcomes. Sci. Rep. 14, 5288 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirsch, N. et al. HDAC9 structural variants disrupting TWIST1 transcriptional regulation lead to craniofacial and limb malformations. Genome Res. 32, 1242–1253 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weischenfeldt, J. et al. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat. Genet. 49, 65–74 (2017). This report first described the importance of enhancer hijacking in cancer owing to somatic CNVs.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes. Nat. Methods 18, 661–668 (2021). This paper reported a computational tool to identify enhancer hijacking events from patient-derived Hi-C maps and its visual representation in the reconstructed genome.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flöttmann, R. et al. Noncoding copy-number variations are associated with congenital limb malformation. Genet. Med. 20, 599–607 (2018).

    PubMed 

    Google Scholar
     

  • Newman, S., Hermetz, K. E., Weckselblatt, B. & Rudd, M. K. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am. J. Hum. Genet. 96, 208–220 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Franke, M. et al. Duplications disrupt chromatin architecture and rewire GPR101–enhancer communication in X-linked acrogigantism. Am. J. Hum. Genet. 109, 553–570 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database 2017, bax028 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Bruijn, S. E. et al. Structural variants create new topological-associated domains and ectopic retinal enhancer–gene contact in dominant retinitis pigmentosa. Am. J. Hum. Genet. 107, 802–814 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meinel, J. A. et al. Disruption of the topologically associated domain at Xp21.2 is related to 46,XY gonadal dysgenesis. J. Med. Genet. 60, 469–476 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Veyt, N., Van Buggenhout, G., Devriendt, K., Van Den Bogaert, K. & Brison, N. Expanding the phenotype of copy number variations involving NR0B1 (DAX1). Eur. J. Hum. Genet. 32, 421–425 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, J. C. et al. Inter-chromosomal insertions at Xq27.1 associated with retinal dystrophy induce dysregulation of LINC00632 and CDR1as/ciRS-7. Am. J. Hum. Genet. 112, 523–536 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melo, U. S. et al. Enhancer hijacking at the ARHGAP36 locus is associated with connective tissue to bone transformation. Nat. Commun. 14, 2034 (2023). This study found that enhancer hijacking resulted in a striking phenotype of ossification of connective tissue with postnatal disease onset.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramisch, A. et al. CRUP: a comprehensive framework to predict condition-specific regulatory units. Genome Biol. 20, 227 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Caignec, C. et al. Fryns type mesomelic dysplasia of the upper limbs caused by inverted duplications of the HOXD gene cluster. Eur. J. Hum. Genet. 28, 324–332 (2020).

    PubMed 

    Google Scholar
     

  • Lonfat, N. & Duboule, D. Structure, function and evolution of topologically associating domains (TADs) at HOX loci. FEBS Lett. 589, 2869–2876 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, W. et al. Altered chromatin topologies caused by balanced chromosomal translocation lead to central iris hypoplasia. Nat. Commun. 15, 5048 (2024). This team identified a translocation-led enhancer hijacking by APCDD1 in the developing iris as the molecular diagnosis of central iris hypoplasia in several individuals from a large family.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature 590, 300–307 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damián, A. et al. Long-read genome sequencing identifies cryptic structural variants in congenital aniridia cases. Hum. Genomics 17, 45 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. 3D genome alterations associated with dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia. Nat. Commun. 12, 3708 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laugsch, M. et al. Modeling the pathological long-range regulatory effects of human structural variation with patient-specific hiPSCs. Cell Stem Cell 24, 736–752.e12 (2019). This study found that pericentric inversion entails topologically associating domain shuffling and enhancer disconnection, leading to species-specific haploinsufficiency and branchio-oculo-facial syndrome.

    CAS 
    PubMed 

    Google Scholar
     

  • Milunsky, J. M. et al. TFAP2A mutations result in branchio-oculo-facial syndrome. Am. J. Hum. Genet. 82, 1171–1177 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238–241 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Schorle, H., Meier, P., Buchert, M., Jaenisch, R. & Mitchell, P. J. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–238 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Chandrasekhar, A. et al. Genome sequencing detects a balanced pericentric inversion with breakpoints that impact the DMD and upstream region of POU3F4 genes. Am. J. Med. Genet. A 194, e63462 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Schöpflin, R. et al. Integration of Hi-C with short and long-read genome sequencing reveals the structure of germline rearranged genomes. Nat. Commun. 13, 6470 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Despang, A. et al. Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet. 51, 1263–1271 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Rodríguez-Carballo, E. et al. The HoxD cluster is a dynamic and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev. 31, 2264–2281 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, X. et al. Outward-oriented sites within clustered CTCF boundaries are key for intra-TAD chromatin interactions and gene regulation. Nat. Commun. 14, 8101 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohajeri, K. et al. Transcriptional and functional consequences of alterations to MEF2C and its topological organization in neuronal models. Am. J. Hum. Genet. 109, 2049–2067 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, J., Kim, Y. W., Park, S., Kang, Y. & Kim, A. Multiple CTCF sites cooperate with each other to maintain a TAD for enhancer–promoter interaction in the β-globin locus. FASEB J. 35, e21768 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Chang, L.-H. et al. Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and topologically associating domain boundaries. Nat. Commun. 14, 5615 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabirova, E. et al. TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene. Nat. Commun. 15, 4521 (2024). This paper describes the tissue specificity of enhancer hijacking and gene misexpression upon boundary deletions based on the interplay among loop extrusion, transcription machinery and compensatory CTCF motifs.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H. et al. CTCF mediates dosage- and sequence-context-dependent transcriptional insulation by forming local chromatin domains. Nat. Genet. 53, 1064–1074 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banigan, E. J. et al. Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc. Natl Acad. Sci. USA 120, e2210480120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botten, G. A. et al. Structural variation cooperates with permissive chromatin to control enhancer hijacking-mediated oncogenic transcription. Blood 142, 336–351 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty, S. et al. Enhancer–promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness. Nat. Genet. 55, 280–290 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barshad, G. et al. RNA polymerase II dynamics shape enhancer–promoter interactions. Nat. Genet. 55, 1370–1380 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolt, C. C. et al. Context-dependent enhancer function revealed by targeted inter-TAD relocation. Nat. Commun. 13, 3488 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winick-Ng, W. et al. Cell-type specialization is encoded by specific chromatin topologies. Nature 599, 684–691 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, W. et al. Single-cell DNA methylation and 3D genome architecture in the human brain. Science 382, eadf5357 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraft, K. et al. Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nat. Cell Biol. 21, 305–310 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Stadhouders, R. et al. Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat. Genet. 50, 238–249 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell 28, 1868–1883.e11 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Szabo, Q. et al. Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nat. Genet. 52, 1151–1157 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mensah, M. A. et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 614, 564–571 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kragesteen, B. K., Brancati, F., Digilio, M. C., Mundlos, S. & Spielmann, M. H2AFY promoter deletion causes PITX1 endoactivation and Liebenberg syndrome. J. Med. Genet. 56, 246–251 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Monteagudo-Sánchez, A., Richard, A. J., Scarpa, M., Noordermeer, D. & Greenberg, M. V. C. The impact of the embryonic DNA methylation program on CTCF-mediated genome regulation. Nucleic Acids Res. 52, 10934–10950 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung, T.-C., Kingsley, D. M. & Boettiger, A. N. Boundary stacking interactions enable cross-TAD enhancer–promoter communication during limb development. Nat. Genet. 56, 306–314 (2024). This work presents a revised perspective on the function of TAD boundaries, highlighting their dual role in both facilitating and restricting cis-regulatory interactions.

    CAS 
    PubMed 

    Google Scholar
     

  • Yokoshi, M., Segawa, K. & Fukaya, T. Visualizing the role of boundary elements in enhancer–promoter communication. Mol. Cell 78, 224–235.e5 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Davidson, I. F. et al. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 616, 822–827 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Increased enhancer–promoter interactions during developmental enhancer activation in mammals. Nat. Genet. 56, 675–685 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beccari, L. et al. Dbx2 regulation in limbs suggests interTAD sharing of enhancers. Dev. Dyn. 250, 1280–1299 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. GAGA-associated factor fosters loop formation in the Drosophila genome. Mol. Cell 83, 1519–1526.e4 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Y. et al. Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS. Cell 186, 5269–5289.e22 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyle, S. et al. A central role for canonical PRC1 in shaping the 3D nuclear landscape. Genes Dev. 34, 931–949 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pachano, T., Crispatzu, G. & Rada-Iglesias, A. Polycomb proteins as organizers of 3D genome architecture in embryonic stem cells. Brief. Funct. Genomics 18, 358–366 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Weiner, D. J. et al. Statistical and functional convergence of common and rare genetic influences on autism at chromosome 16p. Nat. Genet. 54, 1630–1639 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loviglio, M. N. et al. Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes. Mol. Psychiatry 22, 836–849 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Local and global chromatin interactions are altered by large genomic deletions associated with human brain development. Nat. Commun. 9, 5356 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konrad, E. D. H. et al. CTCF variants in 39 individuals with a variable neurodevelopmental disorder broaden the mutational and clinical spectrum. Genet. Med. 21, 2723–2733 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregor, A. et al. De novo mutations in the genome organizer CTCF cause intellectual disability. Am. J. Hum. Genet. 93, 124–131 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. CTCF mutation at R567 causes developmental disorders via 3D genome rearrangement and abnormal neurodevelopment. Nat. Commun. 15, 5524 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krantz, I. D. et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat. Genet. 36, 631–635 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. et al. Machine learning enables pan-cancer identification of mutational hotspots at persistent CTCF binding sites. Nucleic Acids Res. 52, 8086–8099 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Allou, L. et al. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature 592, 93–98 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Quinodoz, M. et al. De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa. Preprint at medRxiv https://doi.org/10.1101/2025.01.06.24317169 (2025).

  • Chen, Y. et al. De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome. Nature 632, 832–840 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • FitzPatrick, D. R. et al. Transcriptome analysis of human autosomal trisomy. Hum. Mol. Genet. 11, 3249–3256 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Meharena, H. S. et al. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell 29, 116–130.e7 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, S. et al. The role of cardiomyocyte senescence in cardiovascular diseases: a molecular biology update. Eur. J. Pharmacol. 983, 176961 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Mahmood, S. R. et al. β-actin dependent chromatin remodeling mediates compartment level changes in 3D genome architecture. Nat. Commun. 12, 5240 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Battirossi, E. et al. Assessment of the cytoskeletal impact of beta-actin mutations leading to non-muscle actinopathies by means of dual laser optical tweezers (DLOT). Biophys. J. 122, 195a (2023).


    Google Scholar
     

  • Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020).

    PubMed 

    Google Scholar
     

  • McArthur, E. & Capra, J. A. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability. Am. J. Hum. Genet. 108, 269–283 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S., Übelmesser, N., Barbieri, M. & Papantonis, A. Enhancer–promoter contact formation requires RNAPII and antagonizes loop extrusion. Nat. Genet. 55, 832–840 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • ENCODE Project Consortium et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).


    Google Scholar
     

  • Nieboer, M. M. & de Ridder, J. svMIL: predicting the pathogenic effect of TAD boundary-disrupting somatic structural variants through multiple instance learning. Bioinformatics 36, i692–i699 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hertzberg, J., Mundlos, S., Vingron, M. & Gallone, G. TADA — a machine learning tool for functional annotation-based prioritisation of pathogenic CNVs. Genome Biol. 23, 67 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharo, A. G., Hu, Z., Sunyaev, S. R. & Brenner, S. E. StrVCTVRE: a supervised learning method to predict the pathogenicity of human genome structural variants. Am. J. Hum. Genet. 109, 195–209 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z., Li, Q., Marchionni, L. & Wang, K. PhenoSV: interpretable phenotype-aware model for the prioritization of genes affected by structural variants. Nat. Commun. 14, 7805 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geoffroy, V. et al. AnnotSV and knotAnnotSV: a web server for human structural variations annotations, ranking and analysis. Nucleic Acids Res. 49, W21–W28 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fino, J., Marques, B., Dong, Z. & David, D. SVInterpreter: a comprehensive topologically associated domain-based clinical outcome prediction tool for balanced and unbalanced structural variants. Front. Genet. 12, 757170 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Requena, F. et al. CNVxplorer: a web tool to assist clinical interpretation of CNVs in rare disease patients. Nucleic Acids Res. 49, W93–W103 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. X-CNV: genome-wide prediction of the pathogenicity of copy number variations. Genome Med. 13, 132 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinert, P. & Kircher, M. A framework to score the effects of structural variants in health and disease. Genome Res. 32, 766–777 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spector, J. D. & Wiita, A. P. ClinTAD: a tool for copy number variant interpretation in the context of topologically associated domains. J. Hum. Genet. 64, 437–443 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Poszewiecka, B. et al. TADeus2: a web server facilitating the clinical diagnosis by pathogenicity assessment of structural variations disarranging 3D chromatin structure. Nucleic Acids Res. 50, W744–W752 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez-Gaya, V. & Rada-Iglesias, A. POSTRE: a tool to predict the pathological effects of human structural variants. Nucleic Acids Res. 51, e54 (2023). This report presented a computational tool for prioritizing a list of SVs, which considers both linear and 3D genome effects in a tissue-specific manner based on clinical phenotype.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale. Nat. Genet. 54, 725–734 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melo, U. S. et al. Hi-C identifies complex genomic rearrangements and TAD-shuffling in developmental diseases. Am. J. Hum. Genet. 106, 872–884 (2020). This study introduced Hi-C as a diagnostic tool for analysing clinical samples from various tissues, including blood, amnion and fibroblasts.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beagrie, R. A. et al. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C. Nat. Methods 20, 1037–1047 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, J.-Y. et al. High-throughput pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding. Nat. Commun. 14, 1250 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, T. et al. GAGE-seq concurrently profiles multiscale 3D genome organization and gene expression in single cells. Nat. Genet. 56, 1701–1711 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, L. et al. Droplet Hi-C enables scalable, single-cell profiling of chromatin architecture in heterogeneous tissues. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02447-1 (2024).

  • Yang, R. et al. Epiphany: predicting Hi-C contact maps from 1D epigenomic signals. Genome Biol. 24, 134 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbas, A. et al. ChIPr: accurate prediction of cohesin-mediated 3D genome organization from 2D chromatin features. Genome Biol. 25, 15 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuette, G., Lao, Z. & Zhang, B. ChromoGen: diffusion model predicts single-cell chromatin conformations. Sci. Adv. 11, eadr8265 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. The 3D genome and its impacts on human health and disease. Life Med. 2, lnad012 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoy, S. M. Exagamglogene autotemcel: first approval. Mol. Diagn. Ther. 28, 133–139 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ye, L. et al. Genome editing using CRISPR–Cas9 to create the HPFH genotype in HSPCs: an approach for treating sickle cell disease and β-thalassemia. Proc. Natl Acad. Sci. USA 113, 10661–10665 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Himadewi, P. et al. 3’HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression. eLife 10, e70557 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinglay, S. et al. Multiplex generation and single-cell analysis of structural variants in mammalian genomes. Science 387, eado5978 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koeppel, J. et al. Randomizing the human genome by engineering recombination between repeat elements. Science 387, eado3979 (2025). Together with Pinglay et al. (2025), this paper used high-throughput technology for multiplexed testing of SVs in mammalian genomes.

    CAS 
    PubMed 

    Google Scholar
     

  • Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Y. et al. A pangenome reference of 36 Chinese populations. Nature 619, 112–121 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • All of Us Research Program Genomics Investigators. Genomic data in the All of Us research program. Nature 627, 340–346 (2024).


    Google Scholar
     

  • Wang, Y. et al. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 19, 151 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosicki, M. et al. VISTA Enhancer browser: an updated database of tissue-specific developmental enhancers. Nucleic Acids Res. 53, D324–D330 (2024). This study reports the most extensive collection of experimentally validated tissue-specific enhancers in transgenic mice.

    PubMed Central 

    Google Scholar
     

  • Mills, C., Marconett, C. N., Lewinger, J. P. & Mi, H. PEACOCK: a machine learning approach to assess the validity of cell type-specific enhancer–gene regulatory relationships. npj Syst. Biol. Appl. 9, 9 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity. Nat. Commun. 13, 1293 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zepeda-Mendoza, C. J. & Morton, C. C. The iceberg under water: unexplored complexity of chromoanagenesis in congenital disorders. Am. J. Hum. Genet. 104, 565–577 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dileep, V. et al. Neuronal DNA double-strand breaks lead to genome structural variations and 3D genome disruption in neurodegeneration. Cell 186, 4404–4421.e20 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simovic-Lorenz, M. & Ernst, A. Chromothripsis in cancer. Nat. Rev. Cancer 25, 79–92 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, T. et al. Pervasive structural heterogeneity rewires glioblastoma chromosomes to sustain patient-specific transcriptional programs. Nat. Commun. 15, 3905 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helmsauer, K. et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat. Commun. 11, 5823 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarni, D. et al. 3D genome organization contributes to genome instability at fragile sites. Nat. Commun. 11, 3613 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sidiropoulos, N. et al. Somatic structural variant formation is guided by and influences genome architecture. Genome Res. 32, 643–655 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kloosterman, W. P. et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, N. D. et al. Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science 361, eaam8419 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, T. et al. Breakpoint analysis for cytogenetically balanced translocation revealed unexpected complex structural abnormalities and suggested the position effect for MEF2C. Am. J. Med. Genet. Part A 191, 1632–1638 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Middelkamp, S. et al. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med. 9, 9 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ordulu, Z. et al. Structural chromosomal rearrangements require nucleotide-level resolution: lessons from next-generation sequencing in prenatal diagnosis. Am. J. Hum. Genet. 99, 1015–1033 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melo, U. S. et al. Complete lung agenesis caused by complex genomic rearrangements with neo-TAD formation at the SHH locus. Hum. Genet. 140, 1459–1469 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, F., Xu, J., Dixon, J. & Yue, F. Analysis of Hi-C data for discovery of structural variations in cancer. Methods Mol. Biol. 2301, 143–161 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, J. R. et al. Integrative detection and analysis of structural variation in cancer genomes. Nat. Genet. 50, 1388–1398 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar