• Chang, Q. et al. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol. Med. 7, 1077–1086 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iizuka, T. et al. Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum. Mol. Genet. 24, 3651–3661 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Askew, C. et al. Tmc gene therapy restores auditory function in deaf mice. Sci. Transl. Med. 7, 295ra108 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isgrig, K. et al. Gene therapy restores balance and auditory functions in a mouse model of Usher syndrome. Mol. Ther. 25, 780–791 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, B. et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat. Biotechnol. 35, 264–272 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dulon, D. et al. Clarin-1 gene transfer rescues auditory synaptopathy in model of Usher syndrome. J. Clin. Invest. 128, 3382–3401 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nist-Lund, C. A. et al. Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat. Commun. 10, 236 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roux, I. et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127, 277–289 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vona, B., Rad, A. & Reisinger, E. The many faces of DFNB9: relating OTOF variants to hearing impairment. Genes (Basel) 11, 1411 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwasa, Y. I. et al. Detailed clinical features and genotype-phenotype correlation in an OTOF-related hearing loss cohort in Japan. Hum. Genet. 141, 865–875 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ford, C. L. et al. The natural history, clinical outcomes, and genotype-phenotype relationship of otoferlin-related hearing loss: a systematic, quantitative literature review. Hum. Genet. 142, 1429–1449 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landegger, L. D. et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat. Biotechnol. 35, 280–284 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinn, E. et al. In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep. 12, 1056–1068 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, J. et al. Preclinical efficacy and safety evaluation of AAV-OTOF in DFNB9 mouse model and nonhuman primate. Adv. Sci. (Weinh.) 11, e2306201 (2024).

    PubMed 

    Google Scholar
     

  • Qi, J. et al. AAV-mediated gene therapy restores hearing in patients with DFNB9 deafness. Adv. Sci. (Weinh.) 11, e2306788 (2024).

    PubMed 

    Google Scholar
     

  • Lv, J. et al. AAV1-hOTOF gene therapy for autosomal recessive deafness 9: a single-arm trial. Lancet 403, 2317–2325 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Bilateral gene therapy in children with autosomal recessive deafness 9: single-arm trial results. Nat. Med. 30, 1898–1904 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andres-Mateos, E. et al. Choice of vector and surgical approach enables efficient cochlear gene transfer in nonhuman primate. Nat. Commun. 13, 1359 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Starr, A. et al. Pathology and physiology of auditory neuropathy with a novel mutation in the MPZ gene (Tyr145->Ser). Brain 126, 1604–1619 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Zeng, F. G., Kong, Y. Y., Michalewski, H. J. & Starr, A. Perceptual consequences of disrupted auditory nerve activity. J. Neurophysiol. 93, 3050–3063 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Chambers, A. R. et al. Central gain restores auditory processing following near-complete cochlear denervation. Neuron 89, 867–879 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, F. G., Oba, S., Garde, S., Sininger, Y. & Starr, A. Temporal and speech processing deficits in auditory neuropathy. Neuroreport 10, 3429–3435 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atalay, B., Eser, M. B., Kalcioglu, M. T. & Ankarali, H. Comprehensive analysis of factors affecting cochlear size: a systematic review and meta-analysis. Laryngoscope 132, 188–197 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Dai, C. et al. Rhesus cochlear and vestibular functions are preserved after inner ear injection of saline volume sufficient for gene therapy delivery. J. Assoc. Res. Otolaryngol. 18, 601–617 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ekdale, E. G. Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS ONE 8, e66624 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toth, M., Alpar, A., Patonay, L. & Olah, I. Development and surgical anatomy of the round window niche. Ann. Anat. 188, 93–101 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Katz, J., Chasin, M., English, K., Hood, L. J. & Tillery, K. L. Handbook of Clinical Audiology 7th edn (Lippincott Williams & Wilkins, 2015).