• Coyne, J. A. & Orr, H. A. Speciation. (Sinauer Associates, Inc., Sunderland, 2004).

  • Grant, B. R. & Grant, P. R. Cultural inheritance of song and its role in the evolution of Darwin’s finches. Evolution 50, 2471–2487 (1996).

    PubMed 

    Google Scholar
     

  • Harrison, R. G. & Larson, E. L. Hybridization, introgression, and the nature of species boundaries. J. Hered. 105, 795–809 (2014).

    PubMed 

    Google Scholar
     

  • Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).

    PubMed 

    Google Scholar
     

  • Mallet, J. Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2971–2986 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barton, N. H. The dynamics of hybrid zones. Heredity 43, 341–359 (1979).


    Google Scholar
     

  • Barton, N. H. & Hewitt, G. M. Hybrid zones and speciation. In Evolution and Speciation: Essays in Honor of M.J.D. White (eds Atchley, W. & Woodruff, D). 109–145. (Cambridge University Press, New York, 1981).

  • Irwin, D. E. Assortative mating in hybrid zones is remarkably ineffective in promoting speciation. Am. Nat. 195, E000–E000 (2020).


    Google Scholar
     

  • Coyne, J. A. Genetics and speciation. Nature 355, 511–515 (1992).

    ADS 
    PubMed 

    Google Scholar
     

  • Turner, L. M. & Harr, B. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions. eLife 3, e02504 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coughlan, J. M. & Matute, D. R. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20190533 (2020).


    Google Scholar
     

  • Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • Thompson, K. A. et al. The ecology of hybrid incompatibilities. Cold Spring Harb. Perspect. Biol. 16, a041440 (2023).

  • Christie, K. & Strauss, S. Y. Along the speciation continuum: quantifying intrinsic and extrinsic isolating barriers across five million years of evolutionary divergence in California jewelflowers. Evolution 72, 1063–1079 (2018).

    PubMed 

    Google Scholar
     

  • Dobzhansky, T. Speciation as a stage in evolutionary divergence. Am. Nat. 74, 312–321 (1940).


    Google Scholar
     

  • Siol, M., Wright, S. I. & Barrett, S. C. H. The population genomics of plant adaptation. N. Phytol. 188, 313–332 (2010).


    Google Scholar
     

  • Harris, E. E. & Meyer, D. The molecular signature of selection underlying human adaptations. Am. J. Phys. Anthropol. 131, 89–130 (2006).


    Google Scholar
     

  • Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).

    PubMed 

    Google Scholar
     

  • Delmore, K. E. et al. Comparative analysis examining patterns of genomic differentiation across multiple episodes of population divergence in birds. Evol. Lett. 2, 76–87 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roesti, M., Salzburger, W. & Berner, D. Uninformative polymorphisms bias genome scans for signatures of selection. BMC Evol. Biol. 12, 94 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravinet, M. et al. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J. Evol. Biol. 30, 1450–1477 (2017).

    PubMed 

    Google Scholar
     

  • Rockman, M. V. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66, 1–17 (2012).

    PubMed 

    Google Scholar
     

  • Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).

    ADS 
    PubMed 

    Google Scholar
     

  • Mostafavi, H. et al. Identifying genetic variants that affect viability in large cohorts. PLoS Biol. 15, e2002458 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schumer, M. & Brandvain, Y. Determining epistatic selection in admixed populations. Mol. Ecol. 25, 2577–2591 (2016).

    PubMed 

    Google Scholar
     

  • Delmore, K. E., Fox, J. W. & Irwin, D. E. Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc. Biol. Sci. 279, 4582–4589 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delmore, K. E. & Irwin, D. E. Hybrid songbirds employ intermediate routes in a migratory divide. Ecol. Lett. 17, 1211–1218 (2014).

    PubMed 

    Google Scholar
     

  • Justen, H., Lee-Yaw, J. A. & Delmore, K. E. Reduced habitat suitability and landscape connectivity in a songbird migratory divide. Glob. Ecol. Biogeogr. 30, 2043–2056 (2021).


    Google Scholar
     

  • Blain, S. A., Justen, H. C., Easton, W. & Delmore, K. E. Reduced hybrid survival in a migratory divide between songbirds. Ecol. Lett. 27, e14420 (2024).

    PubMed 

    Google Scholar
     

  • Delmore, K. E., Toews, D. P., Germain, R. R., Owens, G. L. & Irwin, D. E. The genetics of seasonal migration and plumage color. Curr. Biol. 26, 2167–2173 (2016).

    PubMed 

    Google Scholar
     

  • Justen, H. C., Easton, W. E. & Delmore, K. E. Mapping seasonal migration in a songbird hybrid zone – heritability, genetic correlations, and genomic patterns linked to speciation. Proc. Natl Acad. Sci. USA 121, e2313442121 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louder, M. I. M. et al. Gene regulation and speciation in a migratory divide between songbirds. Nat. Commun. 15, 98 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satokangas, I., Martin, S. H., Helanterä, H., Saramäki, J. & Kulmuni, J. Multi-locus interactions and the build-up of reproductive isolation. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20190543 (2020).


    Google Scholar
     

  • Pyle, P. Identification Guide to North American Birds—PART 1. (2022).

  • Chhina, A. K., Thompson, K. A. & Schluter, D. Adaptive divergence and the evolution of hybrid trait mismatch in threespine stickleback. Evol-. Lett. 6, 34–45 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berdan, E. L. et al. Structural Variants and Speciation: Multiple Processes at Play. Cold Spring Harb. Perspect. Biol. 16, a041446 (2024).

    PubMed 

    Google Scholar
     

  • Huang, K., Andrew, R. L., Owens, G. L., Ostevik, K. L. & Rieseberg, L. H. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Mol. Ecol. 29, 2535–2549 (2020).

    PubMed 

    Google Scholar
     

  • Shi, Y. et al. Gene flow influences the genomic architecture of local adaptation in six riverine fish species. Mol. Ecol. 32, 1549–1566 (2023).

    PubMed 

    Google Scholar
     

  • Rohwer, S. & Irwin, D. E. Molt, orientation, and avian speciation. Auk 128, 419–425 (2011).


    Google Scholar
     

  • Turbek, S. P., Scordato, E. S. C. & Safran, R. J. The role of seasonal migration in population divergence and reproductive isolation. Trends Ecol. Evol. 33, 164–175 (2018).

    PubMed 

    Google Scholar
     

  • Alves, J. A. et al. Costs, benefits, and fitness consequences of different migratory strategies. Ecology 94, 11–17 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Soriano-Redondo, A. et al. Fitness, behavioral, and energetic trade-offs of different migratory strategies in a partially migratory species. Ecology 104, e4151 (2023).

    PubMed 

    Google Scholar
     

  • Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).

    ADS 

    Google Scholar
     

  • Roth, T. C. & Krochmal, A. R. Of molecules, memories and migration: M1 acetylcholine receptors facilitate spatial memory formation and recall during migratory navigation. Proc. R. Soc. B: Biol. Sci. 285, 20181904 (2018).


    Google Scholar
     

  • Chen, F. et al. Activation of α7 nicotinic acetylcholine receptor improves muscle endurance by upregulating orosomucoid expression and glycogen content in mice. J. Cell. Biochem. 125, e30630 (2024).

    PubMed 

    Google Scholar
     

  • Marques, D. A., Meier, J. I. & Seehausen, O. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34, 531–544 (2019).

    PubMed 

    Google Scholar
     

  • Ruegg, K. C., Hijmans, R. J. & Moritz, C. Climate change and the origin of migratory pathways in the Swainson’s thrush, Catharus ustulatus. J. Biogeogr. 33, 1172–1182 (2006).


    Google Scholar
     

  • Turelli, M. & Orr, H. A. Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154, 1663–1679 (2000).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dingle, H. Animal migration: is there a common migratory syndrome?. J. Ornithol. 147, 212–220 (2006).


    Google Scholar
     

  • Liedvogel, M. & Lundberg, M. The genetics of animal movement and migration syndromes. in Animal Movement Across Scales 219–231 (Oxford University Press, 2014).

  • Ruegg, K. Divergence between subspecies groups of Swainson’s thrush (Catharus ustulatus ustulatus and CU swainsoni). Ornithol. Monogr. 63, 67–77 (2007).

  • Ruegg, K. Genetic, morphological, and ecological characterization of a hybrid zone that spans a migratory divide. Evolution 62, 452–466 (2008).

    PubMed 

    Google Scholar
     

  • Stupariu, M.-S., Cushman, S. A., Pleşoianu, A.-I., Pătru-Stupariu, I. & Fürst, C. Machine learning in landscape ecological analysis: a review of recent approaches. Landsc. Ecol. 37, 1227–1250 (2022).


    Google Scholar
     

  • Lourenço, V. M., Ogutu, J. O., Rodrigues, R. A. P., Posekany, A. & Piepho, H.-P. Genomic prediction using machine learning: a comparison of the performance of regularized regression, ensemble, instance-based and deep learning methods on synthetic and empirical data. BMC Genomics 25, 152 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, T. D. & Bouvier, M. M. The evolution of F1 postzygotic incompatibilities in birds. Evolution 56, 2083–2089 (2002).

    PubMed 

    Google Scholar
     

  • Irwin, D. E. Sex chromosomes and speciation in birds and other ZW systems. Mol. Ecol. 27, 3831–3851 (2018).

    PubMed 

    Google Scholar
     

  • Payseur, B. A., Presgraves, D. C. & Filatov, D. A. Sex chromosomes and speciation. Mol. Ecol. 27, 3745–3748 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Presgraves, D. C. Evaluating genomic signatures of “the large X-effect” during complex speciation. Mol. Ecol. 27, 3822–3830 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirkpatrick, M. & Hall, D. W. Sexual slection and sex linkage. Evolution 58, 683–691 (2004).

    PubMed 

    Google Scholar
     

  • Morgan, A. P. et al. Structural variation shapes the landscape of recombination in mouse. Genetics 206, 603–619 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Ralph, P. Local PCA shows how the effect of population structure differs along the genome. Genetics 211, 289–304 (2019).

    PubMed 

    Google Scholar
     

  • Harringmeyer, O. S. & Hoekstra, H. E. Chromosomal inversion polymorphisms shape the genomic landscape of deer mice. Nat. Ecol. Evol. 6, 1965–1979 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samonte, R. V. & Eichler, E. E. Segmental duplications and the evolution of the primate genome. Nat. Rev. Genet. 3, 65–72 (2002).

    PubMed 

    Google Scholar
     

  • Davies, R. W., Flint, J., Myers, S. & Mott, R. Rapid genotype imputation from sequence without reference panels. Nat. Genet. 48, 965–969 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schumer, M., Powell, D. L. & Corbett-Detig, R. Versatile simulations of admixture and accurate local ancestry inference with mixnmatch and ancestryinfer. Mol. Ecol. Resour. 20, 1141–1151 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corbett-Detig, R. & Nielsen, R. A hidden Markov model approach for simultaneously estimating local ancestry and admixture time using next generation sequence data in samples of arbitrary ploidy. PLOS Genet. 13, e1006529 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auton, A. & McVean, G. Recombination rate estimation in the presence of hotspots. Genome Res. 17, 1219–1227 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breheny, P. & Burchett, W. Visualization of Regression Models Using visreg. in (2012).

  • Wilkinson, L. ggplot2: Elegant Graphics for Data Analysis by WICKHAM, H. Biometrics 67, 678–679 (2011).


    Google Scholar
     

  • Cui, Y. et al. BioCircos.js: an interactive Circos JavaScript library for biological data visualization on web applications. Bioinformatics 32, 1740–1742 (2016).

    PubMed 

    Google Scholar
     

  • Yeaman, S., Gerstein, A. C., Hodgins, K. A. & Whitlock, M. C. Quantifying how constraints limit the diversity of viable routes to adaptation. PLOS Genet. 14, e1007717 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todesco, M. et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584, 602–607 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv http://arxiv.org/abs/1303.3997 (2013).

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolff, J. et al. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 48, W177–W184 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • BirdLife International and Handbook of the Birds of the World. Bird species distribution maps of the world. http://datazone.birdlife.org/species/requestdis (2020).