• Kampinga HH, Andreasson C, Barducci A, Cheetham ME, Cyr D, Emanuelsson C, et al. Function, evolution, and structure of J-domain proteins. Cell Stress Chaperones. 2019;24:7–15.

    PubMed 

    Google Scholar
     

  • Sarparanta J, Jonson PH, Kawan S, Udd B. Neuromuscular diseases due to chaperone mutations: a review and some new results. Int J Mol Sci. 2020;21:1409.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, et al. Maintaining proteostasis under mechanical stress. EMBO Rep. 2021;22:EMBR202152507.


    Google Scholar
     

  • Acquarone D, Bertero A, Brancaccio M, Sorge M. Chaperone proteins: the rising players in muscle atrophy. J Cachexia Sarcopenia Muscle. 2025;16:13659.


    Google Scholar
     

  • Bell RAV, Al-Khalaf M, Megeney LA. The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skelet Muscle. 2016;6:16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harms MB, Sommerville RB, Allred P, Bell S, Ma D, Cooper P, et al. Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol. 2012;71:407–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarparanta J, Jonson PH, Golzio C, Sandell S, Luque H, Screen M, et al. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet. 2012;44:450–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weihl CC, Udd B, Hanna M, ENMC Workshop Study Group. 234th ENMC International Workshop: chaperone dysfunction in muscle disease Naarden, The Netherlands, 8–10 December 2017. Neuromuscul Disord. 2018;28:1022–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019;20:665–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Gonzaga-Jauregui C, Harel T, Gambin T, Kousi M, Griffin LB, Francescatto L, et al. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep. 2015;12:1169–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruggieri A, Brancati F, Zanotti S, Maggi L, Pasanisi MB, Saredi S, et al. Complete loss of the DNAJB6 G/F domain and novel missense mutations cause distal-onset DNAJB6 myopathy. Acta Neuropathol Commun. 2015;3:44.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruggieri A, Saredi S, Zanotti S, Pasanisi MB, Maggi L, Mora M. DNAJB6 myopathies: focused review on an emerging and expanding group of myopathies. Front Mol Biosci. 2016;3:63.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato T, Hayashi YK, Oya Y, Kondo T, Sugie K, Kaneda D, et al. DNAJB6 myopathy in an Asian cohort and cytoplasmic/nuclear inclusions. Neuromuscul Disord. 2013;23:269–76.

    PubMed 

    Google Scholar
     

  • Nam TS, Li W, Heo SH, Lee KH, Cho A, Shin JH, et al. A novel mutation in DNAJB6, p.(Phe91Leu), in childhood-onset LGMD1D with a severe phenotype. Neuromuscul Disord. 2015;25:843–51.

    PubMed 

    Google Scholar
     

  • Nallamilli BRR, Chakravorty S, Kesari A, Tanner A, Ankala A, Schneider T, et al. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann Clin Transl Neurol. 2018;5:1574–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jonson PH, Palmio J, Johari M, Penttilä S, Evilä A, Nelson I, et al. Novel mutations in DNAJB6 cause LGMD1D and distal myopathy in French families. Eur J Neurol. 2018;25:790–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Ji G, Wang N, Han X, Wang Y, Zhang J, Wu Y, et al. Case Report: A novel splice-site mutation in DNAJB6 associated with juvenile-onset proximal–distal myopathy in a Chinese patient. Front Genet. 2022;13:925926.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Sun P, Yu M, Xie Z, Yu J, Liu X, et al. Mutational and clinical spectrum of myofibrillar myopathy in one center from China. J Neuromuscul Dis. 2024;11:1247–59.

    PubMed 

    Google Scholar
     

  • Palmio J, Jonson PH, Inoue M, Sarparanta J, Bengoechea R, Savarese M, et al. Mutations in the J domain of DNAJB6 cause dominant distal myopathy. Neuromuscul Disord. 2020;30:38–46.

    PubMed 

    Google Scholar
     

  • Qian F-Y, Guo YD, Zu J, Zhang JH, Zheng YM, Abdoulaye IA, et al. A novel recessive mutation affecting DNAJB6a causes myofibrillar myopathy. Acta Neuropathol Commun. 2021;9:23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Findlay AR, Robinson SE, Poelker S, Seiffert M, Bengoechea R, Weihl CC. LGMDD1 natural history and phenotypic spectrum: Implications for clinical trials. Ann Clin Transl Neurol. 2022;10:181–94.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandell S, Huovinen S, Palmio J, Raheem O, Lindfors M, Zhao F, et al. Diagnostically important muscle pathology in DNAJB6 mutated LGMD1D. Acta Neuropathol Commun. 2016;4:9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weihl CC, Töpf A, Bengoechea R, Duff J, Charlton R, Garcia SK, et al. Loss of function variants in DNAJB4 cause a myopathy with early respiratory failure. Acta Neuropathol. 2023;145:127–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Inoue M, Jayaraman D, Bengoechea R, Bhadra A, Genetti CA, Aldeeri AA, et al. Genotype‒phenotype correlation in recessive DNAJB4 myopathy. Acta Neuropathol Commun. 2024;12:171.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inoue M, Noguchi S, Inoue YU, Iida A, Ogawa M, Bengoechea R, et al. Distinctive chaperonopathy in skeletal muscle associated with the dominant variant in DNAJB4. Acta Neuropathol. 2022;145:235–55.

    PubMed 

    Google Scholar
     

  • Liu M, Xu Y, Hong D, Cong L, Fan Y, Zhang J. DNAJB2 c.184C>T mutation associated with distal hereditary motor neuropathy with rimmed vacuolar myopathy. Clin Neuropathol. 2022;41:226–32.

    PubMed 

    Google Scholar
     

  • Sarparanta J, Jonson PH, Reimann J, Vihola A, Luque H, Penttilä S, et al. Extension of the DNAJB2a isoform in a dominant neuromyopathy family. Hum Mol Genet. 2023;32:3029–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abayev-Avraham M, Salzberg Y, Gliksberg D, Oren-Suissa M, Rosenzweig R. DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones. Nat Commun. 2023;14:7066.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stein KC, Bengoechea R, Harms MB, Weihl CC, True HL. Myopathy-causing mutations in an HSP40 chaperone disrupt processing of specific client conformers*. J Biol Chem. 2014;289:21120–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhadra AK, Rau MJ, Daw JA, Fitzpatrick JAJ, Weihl CC, True HL. Disease-associated mutations within the yeast DNAJB6 homolog Sis1 slow conformer-specific substrate processing and can be corrected by the modulation of nucleotide exchange factors. Nat Commun. 2022;13:4570.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bengoechea R, Findlay AR, Bhadra AK, Shao H, Stein KC, Pittman SK, et al. Inhibition of DNAJ-HSP70 interaction improves strength in muscular dystrophy. J Clin Investig. 2020;130:4470–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol. 2010;20:143–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Findlay AR, Paing MM, Daw JA, Haller M, Bengoechea R, Pittman SK, et al. DNAJB6 isoform specific knockdown: therapeutic potential for limb girdle muscular dystrophy D1. Mol Ther Nucleic Acids. 2023;32:937–48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bengoechea R, Pittman SK, Tuck EP, True HL, Weihl CC. Myofibrillar disruption and RNA-binding protein aggregation in a mouse model of limb-girdle muscular dystrophy 1D. Hum Mol Genet. 2015;24:6588–602.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machado PM, McDermott MP, Blaettler T, Sundgreen C, Amato AA, Ciafaloni E, et al. Safety and efficacy of arimoclomol for inclusion body myositis: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2023;22:900–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech. 2024;17:dmm050720.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inoue M, Weihl CC. Myofibrillar myopathy: towards a mechanism-based definition as a Z-disk-opathy. Curr Opin Neurol. 2025; https://doi.org/10.1097/wco.0000000000001397.

  • Liu J, Wallace LM, Garwick-Coppens SE, Sloboda DD, Davis CS, Hakim CH, et al. RNAi-mediated gene silencing of mutant myotilin improves myopathy in LGMD1A mice. Mol Ther Nucleic Acids. 2014;3:e160.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett. 2019;24:69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crudele JM, Chamberlain JS. AAV-based gene therapies for the muscular dystrophies. Hum Mol Genet. 2019;28:R102–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar